// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // Sensors are not available in HIL_MODE_ATTITUDE #if HIL_MODE != HIL_MODE_ATTITUDE void ReadSCP1000(void) {} void init_barometer(void) { int flashcount; #if HIL_MODE == HIL_MODE_SENSORS hil.update(); // look for inbound hil packets for initialization #endif ground_pressure = 0; while(ground_pressure == 0){ barometer.Read(); // Get initial data from absolute pressure sensor ground_pressure = barometer.Press; ground_temperature = barometer.Temp; delay(20); Serial.printf("barometer.Press %ld\n", barometer.Press); } for(int i = 0; i < 30; i++){ // We take some readings... #if HIL_MODE == HIL_MODE_SENSORS hil.update(); // look for inbound hil packets #endif barometer.Read(); // Get initial data from absolute pressure sensor ground_pressure = (ground_pressure * 9l + barometer.Press) / 10l; ground_temperature = (ground_temperature * 9 + barometer.Temp) / 10; delay(20); if(flashcount == 5) { digitalWrite(C_LED_PIN, LOW); digitalWrite(A_LED_PIN, HIGH); digitalWrite(B_LED_PIN, LOW); } if(flashcount >= 10) { flashcount = 0; digitalWrite(C_LED_PIN, HIGH); digitalWrite(A_LED_PIN, LOW); digitalWrite(B_LED_PIN, HIGH); } flashcount++; } // makes the filtering work later abs_pressure = barometer.Press; // save home pressure - will be overwritten by init_home, no big deal ground_pressure = abs_pressure; //Serial.printf("abs_pressure %ld\n", abs_pressure); SendDebugln("barometer calibration complete."); } long read_barometer(void) { float x, scaling, temp; barometer.Read(); // Get new data from absolute pressure sensor //abs_pressure = (abs_pressure + barometer.Press) >> 1; // Small filtering abs_pressure = ((float)abs_pressure * .7) + ((float)barometer.Press * .3); // large filtering scaling = (float)ground_pressure / (float)abs_pressure; temp = ((float)ground_temperature / 10.0f) + 273.15f; x = log(scaling) * temp * 29271.267f; return (x / 10); } // in M/S * 100 void read_airspeed(void) { } void zero_airspeed(void) { } #endif // HIL_MODE != HIL_MODE_ATTITUDE #if BATTERY_EVENT == 1 void read_battery(void) { battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN1)) * .1 + battery_voltage1 * .9; battery_voltage2 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN2)) * .1 + battery_voltage2 * .9; battery_voltage3 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN3)) * .1 + battery_voltage3 * .9; battery_voltage4 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN4)) * .1 + battery_voltage4 * .9; #if BATTERY_TYPE == 0 if(battery_voltage3 < LOW_VOLTAGE) low_battery_event(); battery_voltage = battery_voltage3; // set total battery voltage, for telemetry stream #endif #if BATTERY_TYPE == 1 if(battery_voltage4 < LOW_VOLTAGE) low_battery_event(); battery_voltage = battery_voltage4; // set total battery voltage, for telemetry stream #endif } #endif void read_current(void) { current_voltage = CURRENT_VOLTAGE(analogRead(VOLTAGE_PIN_0)) * .1 + current_voltage * .9; //reads power sensor voltage pin current_amps = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps * .9; //reads power sensor current pin current_total += (current_amps * 0.27777) / delta_ms_medium_loop; } //v: 10.9453, a: 17.4023, mah: 8.2