/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // acro_init - initialise acro controller static bool acro_init() { return true; } // acro_run - runs the acro controller // should be called at 100hz or more static void acro_run() { Vector3f rate_target; // for roll, pitch, yaw body-frame rate targets // convert the input to the desired body frame rate rate_target.x = g.rc_1.control_in * g.acro_rp_p; rate_target.y = g.rc_2.control_in * g.acro_rp_p; rate_target.z = g.rc_4.control_in * g.acro_yaw_p; // To-Do: handle acro trainer here? // To-Do: handle helicopter acro_level_mix = constrain_float(1-max(max(abs(g.rc_1.control_in), abs(g.rc_2.control_in)), abs(g.rc_4.control_in))/4500.0, 0, 1)*cos_pitch_x; // set targets for body frame rate controller attitude_control.rate_stab_bf_targets(rate_target); // convert stabilize rates to regular rates attitude_control.rate_stab_bf_to_rate_bf_roll(); attitude_control.rate_stab_bf_to_rate_bf_pitch(); attitude_control.rate_stab_bf_to_rate_bf_yaw(); // call get_acro_level_rates() here? // To-Do: convert body-frame stabilized angles to earth frame angles and update controll_roll, pitch and yaw? // body-frame rate controller is run directly from 100hz loop } // stabilize_init - initialise stabilize controller static bool stabilize_init() { return true; } // stabilize_run - runs the main stabilize controller // should be called at 100hz or more static void stabilize_run() { Vector3f angle_target = attitude_control.angle_ef_targets(); // for roll, pitch and yaw angular targets Vector3f rate_stab_ef_target; // for yaw rate target. Note Vector3f initialises all values to zero in constructor int16_t target_roll, target_pitch; // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // convert pilot input to lean angles // To-Do: convert get_pilot_desired_lean_angles to return angles as floats get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch); angle_target.x = target_roll; angle_target.y = target_pitch; // set target heading to current heading while landed if (ap.land_complete) { angle_target.z = ahrs.yaw_sensor; } // set earth-frame angular targets attitude_control.angle_ef_targets(angle_target); // convert earth-frame angle targets to earth-frame rate targets attitude_control.angle_to_rate_ef_roll(); attitude_control.angle_to_rate_ef_pitch(); // get pilot's desired yaw rate if (!failsafe.radio && !ap.land_complete) { rate_stab_ef_target.z = get_pilot_desired_yaw_rate(g.rc_4.control_in); } // set earth-frame rate stabilize target for yaw with pilot's desired yaw // To-Do: this is quite wasteful to update the entire target vector when only yaw is used attitude_control.rate_stab_ef_targets(rate_stab_ef_target); // convert earth-frame stabilize rate to regular rate target // To-Do: replace G_Dt below attitude_control.rate_stab_ef_to_rate_ef_yaw(); // convert earth-frame rates to body-frame rates attitude_control.rate_ef_targets_to_bf(); // refetch angle targets for reporting angle_target = attitude_control.angle_ef_targets(); control_roll = angle_target.x; control_pitch = angle_target.y; control_yaw = angle_target.z; // body-frame rate controller is run directly from 100hz loop // do not run throttle controllers if motors disarmed if( !motors.armed() || g.rc_3.control_in <= 0) { attitude_control.set_throttle_out(0, false); throttle_accel_deactivate(); // do not allow the accel based throttle to override our command set_target_alt_for_reporting(0); }else{ // manual throttle but with angle boost int16_t pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in); attitude_control.set_throttle_out(pilot_throttle_scaled, false); // update estimate of throttle cruise #if FRAME_CONFIG == HELI_FRAME update_throttle_cruise(motors.get_collective_out()); #else update_throttle_cruise(pilot_throttle_scaled); #endif //HELI_FRAME if (!ap.takeoff_complete && motors.armed()) { if (pilot_throttle_scaled > g.throttle_cruise) { // we must be in the air by now set_takeoff_complete(true); } } } } // althold_init - initialise althold controller static bool althold_init() { return true; } // althold_run - runs the althold controller // should be called at 100hz or more static void althold_run() { } // auto_init - initialise auto controller static bool auto_init() { return true; } // auto_run - runs the auto controller // should be called at 100hz or more static void auto_run() { Vector3f angle_target; // copy latest output from nav controller to stabilize controller control_roll = wp_nav.get_desired_roll(); control_pitch = wp_nav.get_desired_pitch(); // copy angle targets for reporting purposes angle_target.x = control_roll; angle_target.y = control_pitch; // To-Do: handle pilot input for yaw and different methods to update yaw (ROI, face next wp) angle_target.z = control_yaw; // To-Do: shorten below by moving these often used steps into a single function in the AC_AttitudeControl lib // set earth-frame angular targets attitude_control.angle_ef_targets(angle_target); // convert earth-frame angle targets to earth-frame rate targets attitude_control.angle_to_rate_ef_roll(); attitude_control.angle_to_rate_ef_pitch(); attitude_control.angle_to_rate_ef_yaw(); // convert earth-frame rates to body-frame rates attitude_control.rate_ef_targets_to_bf(); // body-frame rate controller is run directly from 100hz loop } // circle_init - initialise circle controller static bool circle_init() { return true; } // circle_run - runs the circle controller // should be called at 100hz or more static void circle_run() { } // loiter_init - initialise loiter controller static bool loiter_init() { return true; } // loiter_run - runs the loiter controller // should be called at 100hz or more static void loiter_run() { } // guided_init - initialise guided controller static bool guided_init() { return true; } // guided_run - runs the guided controller // should be called at 100hz or more static void guided_run() { } // land_init - initialise land controller static bool land_init() { return true; } // land_run - runs the land controller // should be called at 100hz or more static void land_run() { verify_land(); } // rtl_init - initialise rtl controller static bool rtl_init() { return true; } // rtl_run - runs the return-to-launch controller // should be called at 100hz or more static void rtl_run() { verify_RTL(); } // ofloiter_init - initialise ofloiter controller static bool ofloiter_init() { return true; } // ofloiter_run - runs the optical flow loiter controller // should be called at 100hz or more static void ofloiter_run() { } // drift_init - initialise drift controller static bool drift_init() { return true; } // drift_run - runs the drift controller // should be called at 100hz or more static void drift_run() { } // sport_init - initialise sport controller static bool sport_init() { return true; } // sport_run - runs the sport controller // should be called at 100hz or more static void sport_run() { }