/* * vector3.cpp * Copyright (C) Andrew Tridgell 2012 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. */ #pragma GCC optimize("O3") #include "AP_Math.h" #define HALF_SQRT_2 0.70710678118654757f // rotate a vector by a standard rotation, attempting // to use the minimum number of floating point operations template <typename T> void Vector3<T>::rotate(enum Rotation rotation) { T tmp; switch (rotation) { case ROTATION_NONE: case ROTATION_MAX: return; case ROTATION_YAW_45: { tmp = HALF_SQRT_2*(float)(x - y); y = HALF_SQRT_2*(float)(x + y); x = tmp; return; } case ROTATION_YAW_90: { tmp = x; x = -y; y = tmp; return; } case ROTATION_YAW_135: { tmp = -HALF_SQRT_2*(float)(x + y); y = HALF_SQRT_2*(float)(x - y); x = tmp; return; } case ROTATION_YAW_180: x = -x; y = -y; return; case ROTATION_YAW_225: { tmp = HALF_SQRT_2*(float)(y - x); y = -HALF_SQRT_2*(float)(x + y); x = tmp; return; } case ROTATION_YAW_270: { tmp = x; x = y; y = -tmp; return; } case ROTATION_YAW_315: { tmp = HALF_SQRT_2*(float)(x + y); y = HALF_SQRT_2*(float)(y - x); x = tmp; return; } case ROTATION_ROLL_180: { y = -y; z = -z; return; } case ROTATION_ROLL_180_YAW_45: { tmp = HALF_SQRT_2*(float)(x + y); y = HALF_SQRT_2*(float)(x - y); x = tmp; z = -z; return; } case ROTATION_ROLL_180_YAW_90: { tmp = x; x = y; y = tmp; z = -z; return; } case ROTATION_ROLL_180_YAW_135: { tmp = HALF_SQRT_2*(float)(y - x); y = HALF_SQRT_2*(float)(y + x); x = tmp; z = -z; return; } case ROTATION_PITCH_180: { x = -x; z = -z; return; } case ROTATION_ROLL_180_YAW_225: { tmp = -HALF_SQRT_2*(float)(x + y); y = HALF_SQRT_2*(float)(y - x); x = tmp; z = -z; return; } case ROTATION_ROLL_180_YAW_270: { tmp = x; x = -y; y = -tmp; z = -z; return; } case ROTATION_ROLL_180_YAW_315: { tmp = HALF_SQRT_2*(float)(x - y); y = -HALF_SQRT_2*(float)(x + y); x = tmp; z = -z; return; } case ROTATION_ROLL_90: { tmp = z; z = y; y = -tmp; return; } case ROTATION_ROLL_90_YAW_45: { tmp = z; z = y; y = -tmp; tmp = HALF_SQRT_2*(float)(x - y); y = HALF_SQRT_2*(float)(x + y); x = tmp; return; } case ROTATION_ROLL_90_YAW_90: { tmp = z; z = y; y = -tmp; tmp = x; x = -y; y = tmp; return; } case ROTATION_ROLL_90_YAW_135: { tmp = z; z = y; y = -tmp; tmp = -HALF_SQRT_2*(float)(x + y); y = HALF_SQRT_2*(float)(x - y); x = tmp; return; } case ROTATION_ROLL_270: { tmp = z; z = -y; y = tmp; return; } case ROTATION_ROLL_270_YAW_45: { tmp = z; z = -y; y = tmp; tmp = HALF_SQRT_2*(float)(x - y); y = HALF_SQRT_2*(float)(x + y); x = tmp; return; } case ROTATION_ROLL_270_YAW_90: { tmp = z; z = -y; y = tmp; tmp = x; x = -y; y = tmp; return; } case ROTATION_ROLL_270_YAW_135: { tmp = z; z = -y; y = tmp; tmp = -HALF_SQRT_2*(float)(x + y); y = HALF_SQRT_2*(float)(x - y); x = tmp; return; } case ROTATION_PITCH_90: { tmp = z; z = -x; x = tmp; return; } case ROTATION_PITCH_270: { tmp = z; z = x; x = -tmp; return; } case ROTATION_PITCH_180_YAW_90: { z = -z; tmp = -x; x = -y; y = tmp; return; } case ROTATION_PITCH_180_YAW_270: { x = -x; z = -z; tmp = x; x = y; y = -tmp; return; } case ROTATION_ROLL_90_PITCH_90: { tmp = z; z = y; y = -tmp; tmp = z; z = -x; x = tmp; return; } case ROTATION_ROLL_180_PITCH_90: { y = -y; z = -z; tmp = z; z = -x; x = tmp; return; } case ROTATION_ROLL_270_PITCH_90: { tmp = z; z = -y; y = tmp; tmp = z; z = -x; x = tmp; return; } case ROTATION_ROLL_90_PITCH_180: { tmp = z; z = y; y = -tmp; x = -x; z = -z; return; } case ROTATION_ROLL_270_PITCH_180: { tmp = z; z = -y; y = tmp; x = -x; z = -z; return; } case ROTATION_ROLL_90_PITCH_270: { tmp = z; z = y; y = -tmp; tmp = z; z = x; x = -tmp; return; } case ROTATION_ROLL_180_PITCH_270: { y = -y; z = -z; tmp = z; z = x; x = -tmp; return; } case ROTATION_ROLL_270_PITCH_270: { tmp = z; z = -y; y = tmp; tmp = z; z = x; x = -tmp; return; } case ROTATION_ROLL_90_PITCH_180_YAW_90: { tmp = z; z = y; y = -tmp; x = -x; z = -z; tmp = x; x = -y; y = tmp; return; } case ROTATION_ROLL_90_YAW_270: { tmp = z; z = y; y = -tmp; tmp = x; x = y; y = -tmp; return; } case ROTATION_ROLL_90_PITCH_68_YAW_293: { float tmpx = x; float tmpy = y; float tmpz = z; x = 0.143039f * tmpx + 0.368776f * tmpy + -0.918446f * tmpz; y = -0.332133f * tmpx + -0.856289f * tmpy + -0.395546f * tmpz; z = -0.932324f * tmpx + 0.361625f * tmpy + 0.000000f * tmpz; return; } case ROTATION_PITCH_315: { tmp = HALF_SQRT_2*(float)(x - z); z = HALF_SQRT_2*(float)(x + z); x = tmp; return; } case ROTATION_ROLL_90_PITCH_315: { tmp = z; z = y; y = -tmp; tmp = HALF_SQRT_2*(float)(x - z); z = HALF_SQRT_2*(float)(x + z); x = tmp; return; } case ROTATION_PITCH_7: { const float sin_pitch = 0.12186934340514748f; // sinf(pitch); const float cos_pitch = 0.992546151641322f; // cosf(pitch); float tmpx = x; float tmpz = z; x = cos_pitch * tmpx + sin_pitch * tmpz; z = -sin_pitch * tmpx + cos_pitch * tmpz; return; } case ROTATION_CUSTOM: // no-op; caller should perform custom rotations via matrix multiplication return; } } template <typename T> void Vector3<T>::rotate_inverse(enum Rotation rotation) { Vector3<T> x_vec(1.0f,0.0f,0.0f); Vector3<T> y_vec(0.0f,1.0f,0.0f); Vector3<T> z_vec(0.0f,0.0f,1.0f); x_vec.rotate(rotation); y_vec.rotate(rotation); z_vec.rotate(rotation); Matrix3<T> M( x_vec.x, y_vec.x, z_vec.x, x_vec.y, y_vec.y, z_vec.y, x_vec.z, y_vec.z, z_vec.z ); (*this) = M.mul_transpose(*this); } // vector cross product template <typename T> Vector3<T> Vector3<T>::operator %(const Vector3<T> &v) const { Vector3<T> temp(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x); return temp; } // dot product template <typename T> T Vector3<T>::operator *(const Vector3<T> &v) const { return x*v.x + y*v.y + z*v.z; } template <typename T> float Vector3<T>::length(void) const { return norm(x, y, z); } template <typename T> Vector3<T> &Vector3<T>::operator *=(const T num) { x*=num; y*=num; z*=num; return *this; } template <typename T> Vector3<T> &Vector3<T>::operator /=(const T num) { x /= num; y /= num; z /= num; return *this; } template <typename T> Vector3<T> &Vector3<T>::operator -=(const Vector3<T> &v) { x -= v.x; y -= v.y; z -= v.z; return *this; } template <typename T> bool Vector3<T>::is_nan(void) const { return isnan(x) || isnan(y) || isnan(z); } template <typename T> bool Vector3<T>::is_inf(void) const { return isinf(x) || isinf(y) || isinf(z); } template <typename T> Vector3<T> &Vector3<T>::operator +=(const Vector3<T> &v) { x+=v.x; y+=v.y; z+=v.z; return *this; } template <typename T> Vector3<T> Vector3<T>::operator /(const T num) const { return Vector3<T>(x/num, y/num, z/num); } template <typename T> Vector3<T> Vector3<T>::operator *(const T num) const { return Vector3<T>(x*num, y*num, z*num); } template <typename T> Vector3<T> Vector3<T>::operator -(const Vector3<T> &v) const { return Vector3<T>(x-v.x, y-v.y, z-v.z); } template <typename T> Vector3<T> Vector3<T>::operator +(const Vector3<T> &v) const { return Vector3<T>(x+v.x, y+v.y, z+v.z); } template <typename T> Vector3<T> Vector3<T>::operator -(void) const { return Vector3<T>(-x,-y,-z); } template <typename T> bool Vector3<T>::operator ==(const Vector3<T> &v) const { return (is_equal(x,v.x) && is_equal(y,v.y) && is_equal(z,v.z)); } template <typename T> bool Vector3<T>::operator !=(const Vector3<T> &v) const { return (!is_equal(x,v.x) || !is_equal(y,v.y) || !is_equal(z,v.z)); } template <typename T> float Vector3<T>::angle(const Vector3<T> &v2) const { const float len = this->length() * v2.length(); if (len <= 0) { return 0.0f; } const float cosv = ((*this)*v2) / len; if (fabsf(cosv) >= 1) { return 0.0f; } return acosf(cosv); } // multiplication of transpose by a vector template <typename T> Vector3<T> Vector3<T>::operator *(const Matrix3<T> &m) const { return Vector3<T>(*this * m.colx(), *this * m.coly(), *this * m.colz()); } // multiply a column vector by a row vector, returning a 3x3 matrix template <typename T> Matrix3<T> Vector3<T>::mul_rowcol(const Vector3<T> &v2) const { const Vector3<T> v1 = *this; return Matrix3<T>(v1.x * v2.x, v1.x * v2.y, v1.x * v2.z, v1.y * v2.x, v1.y * v2.y, v1.y * v2.z, v1.z * v2.x, v1.z * v2.y, v1.z * v2.z); } // distance from the tip of this vector to a line segment specified by two vectors template <typename T> float Vector3<T>::distance_to_segment(const Vector3<T> &seg_start, const Vector3<T> &seg_end) const { // triangle side lengths const float a = (*this-seg_start).length(); const float b = (seg_start-seg_end).length(); const float c = (seg_end-*this).length(); // protect against divide by zero later if (::is_zero(b)) { return 0.0f; } // semiperimeter of triangle const float s = (a+b+c) * 0.5f; float area_squared = s*(s-a)*(s-b)*(s-c); // area must be constrained above 0 because a triangle could have 3 points could be on a line and float rounding could push this under 0 if (area_squared < 0.0f) { area_squared = 0.0f; } const float area = safe_sqrt(area_squared); return 2.0f*area/b; } // define for float template void Vector3<float>::rotate(enum Rotation); template void Vector3<float>::rotate_inverse(enum Rotation); template float Vector3<float>::length(void) const; template Vector3<float> Vector3<float>::operator %(const Vector3<float> &v) const; template float Vector3<float>::operator *(const Vector3<float> &v) const; template Vector3<float> Vector3<float>::operator *(const Matrix3<float> &m) const; template Matrix3<float> Vector3<float>::mul_rowcol(const Vector3<float> &v) const; template Vector3<float> &Vector3<float>::operator *=(const float num); template Vector3<float> &Vector3<float>::operator /=(const float num); template Vector3<float> &Vector3<float>::operator -=(const Vector3<float> &v); template Vector3<float> &Vector3<float>::operator +=(const Vector3<float> &v); template Vector3<float> Vector3<float>::operator /(const float num) const; template Vector3<float> Vector3<float>::operator *(const float num) const; template Vector3<float> Vector3<float>::operator +(const Vector3<float> &v) const; template Vector3<float> Vector3<float>::operator -(const Vector3<float> &v) const; template Vector3<float> Vector3<float>::operator -(void) const; template bool Vector3<float>::operator ==(const Vector3<float> &v) const; template bool Vector3<float>::operator !=(const Vector3<float> &v) const; template bool Vector3<float>::is_nan(void) const; template bool Vector3<float>::is_inf(void) const; template float Vector3<float>::angle(const Vector3<float> &v) const; template float Vector3<float>::distance_to_segment(const Vector3<float> &seg_start, const Vector3<float> &seg_end) const; // define needed ops for Vector3l template Vector3<int32_t> &Vector3<int32_t>::operator +=(const Vector3<int32_t> &v); template void Vector3<double>::rotate(enum Rotation); template void Vector3<double>::rotate_inverse(enum Rotation); template float Vector3<double>::length(void) const; template Vector3<double> Vector3<double>::operator %(const Vector3<double> &v) const; template double Vector3<double>::operator *(const Vector3<double> &v) const; template Vector3<double> Vector3<double>::operator *(const Matrix3<double> &m) const; template Matrix3<double> Vector3<double>::mul_rowcol(const Vector3<double> &v) const; template Vector3<double> &Vector3<double>::operator *=(const double num); template Vector3<double> &Vector3<double>::operator /=(const double num); template Vector3<double> &Vector3<double>::operator -=(const Vector3<double> &v); template Vector3<double> &Vector3<double>::operator +=(const Vector3<double> &v); template Vector3<double> Vector3<double>::operator /(const double num) const; template Vector3<double> Vector3<double>::operator *(const double num) const; template Vector3<double> Vector3<double>::operator +(const Vector3<double> &v) const; template Vector3<double> Vector3<double>::operator -(const Vector3<double> &v) const; template Vector3<double> Vector3<double>::operator -(void) const; template bool Vector3<double>::operator ==(const Vector3<double> &v) const; template bool Vector3<double>::operator !=(const Vector3<double> &v) const; template bool Vector3<double>::is_nan(void) const; template bool Vector3<double>::is_inf(void) const;