#include "Sub.h" /* * Init and run calls for guided flight mode */ #define GUIDED_POSVEL_TIMEOUT_MS 3000 // guided mode's position-velocity controller times out after 3seconds with no new updates #define GUIDED_ATTITUDE_TIMEOUT_MS 1000 // guided mode's attitude controller times out after 1 second with no new updates static Vector3p posvel_pos_target_cm; static Vector3f posvel_vel_target_cms; static uint32_t update_time_ms; struct { uint32_t update_time_ms; float roll_cd; float pitch_cd; float yaw_cd; float climb_rate_cms; } static guided_angle_state = {0,0.0f, 0.0f, 0.0f, 0.0f}; struct Guided_Limit { uint32_t timeout_ms; // timeout (in seconds) from the time that guided is invoked float alt_min_cm; // lower altitude limit in cm above home (0 = no limit) float alt_max_cm; // upper altitude limit in cm above home (0 = no limit) float horiz_max_cm; // horizontal position limit in cm from where guided mode was initiated (0 = no limit) uint32_t start_time;// system time in milliseconds that control was handed to the external computer Vector3f start_pos; // start position as a distance from home in cm. used for checking horiz_max limit } guided_limit; // guided_init - initialise guided controller bool ModeGuided::init(bool ignore_checks) { if (!sub.position_ok() && !ignore_checks) { return false; } // start in position control mode guided_pos_control_start(); return true; } // get_default_auto_yaw_mode - returns auto_yaw_mode based on WP_YAW_BEHAVIOR parameter // set rtl parameter to true if this is during an RTL autopilot_yaw_mode ModeGuided::get_default_auto_yaw_mode(bool rtl) const { switch (g.wp_yaw_behavior) { case WP_YAW_BEHAVIOR_NONE: return AUTO_YAW_HOLD; break; case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL: if (rtl) { return AUTO_YAW_HOLD; } else { return AUTO_YAW_LOOK_AT_NEXT_WP; } break; case WP_YAW_BEHAVIOR_LOOK_AHEAD: return AUTO_YAW_LOOK_AHEAD; break; case WP_YAW_BEHAVIOR_CORRECT_XTRACK: return AUTO_YAW_CORRECT_XTRACK; break; case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP: default: return AUTO_YAW_LOOK_AT_NEXT_WP; break; } } // initialise guided mode's position controller void ModeGuided::guided_pos_control_start() { // set to position control mode sub.guided_mode = Guided_WP; // initialise waypoint controller sub.wp_nav.wp_and_spline_init(); // initialise wpnav to stopping point at current altitude // To-Do: set to current location if disarmed? // To-Do: set to stopping point altitude? Vector3f stopping_point; sub.wp_nav.get_wp_stopping_point(stopping_point); // no need to check return status because terrain data is not used sub.wp_nav.set_wp_destination(stopping_point, false); // initialise yaw set_auto_yaw_mode(get_default_auto_yaw_mode(false)); } // initialise guided mode's velocity controller void ModeGuided::guided_vel_control_start() { // set guided_mode to velocity controller sub.guided_mode = Guided_Velocity; // initialize vertical maximum speeds and acceleration position_control->set_max_speed_accel_z(-sub.get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); position_control->set_correction_speed_accel_z(-sub.get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); // initialise velocity controller position_control->init_z_controller(); position_control->init_xy_controller(); // pilot always controls yaw set_auto_yaw_mode(AUTO_YAW_HOLD); } // initialise guided mode's posvel controller void ModeGuided::guided_posvel_control_start() { // set guided_mode to velocity controller sub.guided_mode = Guided_PosVel; // set vertical speed and acceleration position_control->set_max_speed_accel_z(sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up(), sub.wp_nav.get_accel_z()); position_control->set_correction_speed_accel_z(sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up(), sub.wp_nav.get_accel_z()); // initialise velocity controller position_control->init_z_controller(); position_control->init_xy_controller(); // pilot always controls yaw set_auto_yaw_mode(AUTO_YAW_HOLD); } // initialise guided mode's angle controller void ModeGuided::guided_angle_control_start() { // set guided_mode to velocity controller sub.guided_mode = Guided_Angle; // set vertical speed and acceleration position_control->set_max_speed_accel_z(sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up(), sub.wp_nav.get_accel_z()); position_control->set_correction_speed_accel_z(sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up(), sub.wp_nav.get_accel_z()); // initialise velocity controller position_control->init_z_controller(); // initialise targets guided_angle_state.update_time_ms = AP_HAL::millis(); guided_angle_state.roll_cd = ahrs.roll_sensor; guided_angle_state.pitch_cd = ahrs.pitch_sensor; guided_angle_state.yaw_cd = ahrs.yaw_sensor; guided_angle_state.climb_rate_cms = 0.0f; // pilot always controls yaw set_auto_yaw_mode(AUTO_YAW_HOLD); } // guided_set_destination - sets guided mode's target destination // Returns true if the fence is enabled and guided waypoint is within the fence // else return false if the waypoint is outside the fence bool ModeGuided::guided_set_destination(const Vector3f& destination) { // ensure we are in position control mode if (sub.guided_mode != Guided_WP) { guided_pos_control_start(); } #if AP_FENCE_ENABLED // reject destination if outside the fence const Location dest_loc(destination, Location::AltFrame::ABOVE_ORIGIN); if (!sub.fence.check_destination_within_fence(dest_loc)) { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE); // failure is propagated to GCS with NAK return false; } #endif // no need to check return status because terrain data is not used sub.wp_nav.set_wp_destination(destination, false); // log target sub.Log_Write_GuidedTarget(sub.guided_mode, destination, Vector3f()); return true; } // sets guided mode's target from a Location object // returns false if destination could not be set (probably caused by missing terrain data) // or if the fence is enabled and guided waypoint is outside the fence bool ModeGuided::guided_set_destination(const Location& dest_loc) { // ensure we are in position control mode if (sub.guided_mode != Guided_WP) { guided_pos_control_start(); } #if AP_FENCE_ENABLED // reject destination outside the fence. // Note: there is a danger that a target specified as a terrain altitude might not be checked if the conversion to alt-above-home fails if (!sub.fence.check_destination_within_fence(dest_loc)) { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE); // failure is propagated to GCS with NAK return false; } #endif if (!sub.wp_nav.set_wp_destination_loc(dest_loc)) { // failure to set destination can only be because of missing terrain data AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION); // failure is propagated to GCS with NAK return false; } // log target sub.Log_Write_GuidedTarget(sub.guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt),Vector3f()); return true; } // guided_set_destination - sets guided mode's target destination and target heading // Returns true if the fence is enabled and guided waypoint is within the fence // else return false if the waypoint is outside the fence bool ModeGuided::guided_set_destination(const Vector3f& destination, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw) { // ensure we are in position control mode if (sub.guided_mode != Guided_WP) { guided_pos_control_start(); } #if AP_FENCE_ENABLED // reject destination if outside the fence const Location dest_loc(destination, Location::AltFrame::ABOVE_ORIGIN); if (!sub.fence.check_destination_within_fence(dest_loc)) { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE); // failure is propagated to GCS with NAK return false; } #endif // set yaw state guided_set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); update_time_ms = AP_HAL::millis(); // no need to check return status because terrain data is not used sub.wp_nav.set_wp_destination(destination, false); // log target sub.Log_Write_GuidedTarget(sub.guided_mode, destination, Vector3f()); return true; } // guided_set_velocity - sets guided mode's target velocity void ModeGuided::guided_set_velocity(const Vector3f& velocity) { // check we are in velocity control mode if (sub.guided_mode != Guided_Velocity) { guided_vel_control_start(); } update_time_ms = AP_HAL::millis(); // set position controller velocity target position_control->set_vel_desired_cms(velocity); } // guided_set_velocity - sets guided mode's target velocity void ModeGuided::guided_set_velocity(const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw) { // check we are in velocity control mode if (sub.guided_mode != Guided_Velocity) { guided_vel_control_start(); } // set yaw state guided_set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); update_time_ms = AP_HAL::millis(); // set position controller velocity target position_control->set_vel_desired_cms(velocity); } // set guided mode posvel target bool ModeGuided::guided_set_destination_posvel(const Vector3f& destination, const Vector3f& velocity) { // check we are in velocity control mode if (sub.guided_mode != Guided_PosVel) { guided_posvel_control_start(); } #if AP_FENCE_ENABLED // reject destination if outside the fence const Location dest_loc(destination, Location::AltFrame::ABOVE_ORIGIN); if (!sub.fence.check_destination_within_fence(dest_loc)) { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE); // failure is propagated to GCS with NAK return false; } #endif update_time_ms = AP_HAL::millis(); posvel_pos_target_cm = destination.topostype(); posvel_vel_target_cms = velocity; position_control->input_pos_vel_accel_xy(posvel_pos_target_cm.xy(), posvel_vel_target_cms.xy(), Vector2f()); float dz = posvel_pos_target_cm.z; position_control->input_pos_vel_accel_z(dz, posvel_vel_target_cms.z, 0); posvel_pos_target_cm.z = dz; // log target sub.Log_Write_GuidedTarget(sub.guided_mode, destination, velocity); return true; } // set guided mode angle target void ModeGuided::guided_set_angle(const Quaternion &q, float climb_rate_cms) { // check we are in velocity control mode if (sub.guided_mode != Guided_Angle) { guided_angle_control_start(); } // convert quaternion to euler angles q.to_euler(guided_angle_state.roll_cd, guided_angle_state.pitch_cd, guided_angle_state.yaw_cd); guided_angle_state.roll_cd = ToDeg(guided_angle_state.roll_cd) * 100.0f; guided_angle_state.pitch_cd = ToDeg(guided_angle_state.pitch_cd) * 100.0f; guided_angle_state.yaw_cd = wrap_180_cd(ToDeg(guided_angle_state.yaw_cd) * 100.0f); guided_angle_state.climb_rate_cms = climb_rate_cms; guided_angle_state.update_time_ms = AP_HAL::millis(); } // helper function to set yaw state and targets void ModeGuided::guided_set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle) { float current_yaw = wrap_2PI(AP::ahrs().get_yaw()); float euler_yaw_angle; float yaw_error; euler_yaw_angle = wrap_2PI((yaw_cd * 0.01f)); yaw_error = wrap_PI(euler_yaw_angle - current_yaw); int direction = 0; if (yaw_error < 0){ direction = -1; } else { direction = 1; } /* case 1: target yaw only case 2: target yaw and yaw rate case 3: target yaw rate only case 4: hold current yaw */ if (use_yaw && !use_yaw_rate) { sub.yaw_rate_only = false; sub.mode_auto.set_auto_yaw_look_at_heading(yaw_cd * 0.01f, 0.0f, direction, relative_angle); } else if (use_yaw && use_yaw_rate) { sub.yaw_rate_only = false; sub.mode_auto.set_auto_yaw_look_at_heading(yaw_cd * 0.01f, yaw_rate_cds * 0.01f, direction, relative_angle); } else if (!use_yaw && use_yaw_rate) { sub.yaw_rate_only = true; sub.mode_auto.set_yaw_rate(yaw_rate_cds * 0.01f); } else{ sub.yaw_rate_only = false; set_auto_yaw_mode(AUTO_YAW_HOLD); } } // guided_run - runs the guided controller // should be called at 100hz or more void ModeGuided::run() { // call the correct auto controller switch (sub.guided_mode) { case Guided_WP: // run position controller guided_pos_control_run(); break; case Guided_Velocity: // run velocity controller guided_vel_control_run(); break; case Guided_PosVel: // run position-velocity controller guided_posvel_control_run(); break; case Guided_Angle: // run angle controller guided_angle_control_run(); break; } } // guided_pos_control_run - runs the guided position controller // called from guided_run void ModeGuided::guided_pos_control_run() { // if motors not enabled set throttle to zero and exit immediately if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); // Sub vehicles do not stabilize roll/pitch/yaw when disarmed attitude_control->set_throttle_out(0,true,g.throttle_filt); attitude_control->relax_attitude_controllers(); sub.wp_nav.wp_and_spline_init(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!sub.failsafe.pilot_input) { // get pilot's desired yaw rate target_yaw_rate = sub.get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { set_auto_yaw_mode(AUTO_YAW_HOLD); } else{ if (sub.yaw_rate_only){ set_auto_yaw_mode(AUTO_YAW_RATE); } else{ set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING); } } } // set motors to full range motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint controller sub.failsafe_terrain_set_status(sub.wp_nav.update_wpnav()); float lateral_out, forward_out; sub.translate_wpnav_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); // WP_Nav has set the vertical position control targets // run the vertical position controller and set output throttle position_control->update_z_controller(); // call attitude controller if (sub.auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch & yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate); } else if (sub.auto_yaw_mode == AUTO_YAW_LOOK_AT_HEADING) { // roll, pitch from pilot, yaw & yaw_rate from auto_control target_yaw_rate = sub.yaw_look_at_heading_slew * 100.0; attitude_control->input_euler_angle_roll_pitch_slew_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), target_yaw_rate); } else if (sub.auto_yaw_mode == AUTO_YAW_RATE) { // roll, pitch from pilot, yaw_rate from auto_control target_yaw_rate = sub.yaw_look_at_heading_slew * 100.0; attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate); } else { // roll, pitch from pilot, yaw heading from auto_heading() attitude_control->input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), true); } } // guided_vel_control_run - runs the guided velocity controller // called from guided_run void ModeGuided::guided_vel_control_run() { // ifmotors not enabled set throttle to zero and exit immediately if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); // Sub vehicles do not stabilize roll/pitch/yaw when disarmed attitude_control->set_throttle_out(0,true,g.throttle_filt); attitude_control->relax_attitude_controllers(); // initialise velocity controller position_control->init_z_controller(); position_control->init_xy_controller(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!sub.failsafe.pilot_input) { // get pilot's desired yaw rate target_yaw_rate = sub.get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { set_auto_yaw_mode(AUTO_YAW_HOLD); } else{ if (sub.yaw_rate_only){ set_auto_yaw_mode(AUTO_YAW_RATE); } else{ set_auto_yaw_mode(AUTO_YAW_LOOK_AT_HEADING); } } } // set motors to full range motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // set velocity to zero if no updates received for 3 seconds uint32_t tnow = AP_HAL::millis(); if (tnow - update_time_ms > GUIDED_POSVEL_TIMEOUT_MS && !position_control->get_vel_desired_cms().is_zero()) { position_control->set_vel_desired_cms(Vector3f(0,0,0)); } position_control->stop_pos_xy_stabilisation(); // call velocity controller which includes z axis controller position_control->update_xy_controller(); position_control->set_pos_target_z_from_climb_rate_cm(position_control->get_vel_desired_cms().z); position_control->update_z_controller(); float lateral_out, forward_out; sub.translate_pos_control_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); // call attitude controller if (sub.auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch & yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate); } else if (sub.auto_yaw_mode == AUTO_YAW_LOOK_AT_HEADING) { // roll, pitch from pilot, yaw & yaw_rate from auto_control target_yaw_rate = sub.yaw_look_at_heading_slew * 100.0; attitude_control->input_euler_angle_roll_pitch_slew_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), target_yaw_rate); } else if (sub.auto_yaw_mode == AUTO_YAW_RATE) { // roll, pitch from pilot, yaw_rate from auto_control target_yaw_rate = sub.yaw_look_at_heading_slew * 100.0; attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate); } else { // roll, pitch from pilot, yaw heading from auto_heading() attitude_control->input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), true); } } // guided_posvel_control_run - runs the guided posvel controller // called from guided_run void ModeGuided::guided_posvel_control_run() { // if motors not enabled set throttle to zero and exit immediately if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); // Sub vehicles do not stabilize roll/pitch/yaw when disarmed attitude_control->set_throttle_out(0,true,g.throttle_filt); attitude_control->relax_attitude_controllers(); // initialise velocity controller position_control->init_z_controller(); position_control->init_xy_controller(); return; } // process pilot's yaw input float target_yaw_rate = 0; if (!sub.failsafe.pilot_input) { // get pilot's desired yaw rate target_yaw_rate = sub.get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // set motors to full range motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // set velocity to zero if no updates received for 3 seconds uint32_t tnow = AP_HAL::millis(); if (tnow - update_time_ms > GUIDED_POSVEL_TIMEOUT_MS && !posvel_vel_target_cms.is_zero()) { posvel_vel_target_cms.zero(); } // advance position target using velocity target posvel_pos_target_cm += (posvel_vel_target_cms * position_control->get_dt()).topostype(); // send position and velocity targets to position controller position_control->input_pos_vel_accel_xy(posvel_pos_target_cm.xy(), posvel_vel_target_cms.xy(), Vector2f()); float pz = posvel_pos_target_cm.z; position_control->input_pos_vel_accel_z(pz, posvel_vel_target_cms.z, 0); posvel_pos_target_cm.z = pz; // run position controller position_control->update_xy_controller(); position_control->update_z_controller(); float lateral_out, forward_out; sub.translate_pos_control_rp(lateral_out, forward_out); // Send to forward/lateral outputs motors.set_lateral(lateral_out); motors.set_forward(forward_out); // call attitude controller if (sub.auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch & yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), target_yaw_rate); } else { // roll, pitch from pilot, yaw heading from auto_heading() attitude_control->input_euler_angle_roll_pitch_yaw(channel_roll->get_control_in(), channel_pitch->get_control_in(), get_auto_heading(), true); } } // guided_angle_control_run - runs the guided angle controller // called from guided_run void ModeGuided::guided_angle_control_run() { // if motors not enabled set throttle to zero and exit immediately if (!motors.armed()) { motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); // Sub vehicles do not stabilize roll/pitch/yaw when disarmed attitude_control->set_throttle_out(0.0f,true,g.throttle_filt); attitude_control->relax_attitude_controllers(); // initialise velocity controller position_control->init_z_controller(); return; } // constrain desired lean angles float roll_in = guided_angle_state.roll_cd; float pitch_in = guided_angle_state.pitch_cd; float total_in = norm(roll_in, pitch_in); float angle_max = MIN(attitude_control->get_althold_lean_angle_max_cd(), sub.aparm.angle_max); if (total_in > angle_max) { float ratio = angle_max / total_in; roll_in *= ratio; pitch_in *= ratio; } // wrap yaw request float yaw_in = wrap_180_cd(guided_angle_state.yaw_cd); // constrain climb rate float climb_rate_cms = constrain_float(guided_angle_state.climb_rate_cms, -sub.wp_nav.get_default_speed_down(), sub.wp_nav.get_default_speed_up()); // check for timeout - set lean angles and climb rate to zero if no updates received for 3 seconds uint32_t tnow = AP_HAL::millis(); if (tnow - guided_angle_state.update_time_ms > GUIDED_ATTITUDE_TIMEOUT_MS) { roll_in = 0.0f; pitch_in = 0.0f; climb_rate_cms = 0.0f; } // set motors to full range motors.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // call attitude controller attitude_control->input_euler_angle_roll_pitch_yaw(roll_in, pitch_in, yaw_in, true); // call position controller position_control->set_pos_target_z_from_climb_rate_cm(climb_rate_cms); position_control->update_z_controller(); } // Guided Limit code // guided_limit_clear - clear/turn off guided limits void ModeGuided::guided_limit_clear() { guided_limit.timeout_ms = 0; guided_limit.alt_min_cm = 0.0f; guided_limit.alt_max_cm = 0.0f; guided_limit.horiz_max_cm = 0.0f; } // set_auto_yaw_mode - sets the yaw mode for auto void ModeGuided::set_auto_yaw_mode(autopilot_yaw_mode yaw_mode) { // return immediately if no change if (sub.auto_yaw_mode == yaw_mode) { return; } sub.auto_yaw_mode = yaw_mode; // perform initialisation switch (sub.auto_yaw_mode) { case AUTO_YAW_HOLD: // pilot controls the heading break; case AUTO_YAW_LOOK_AT_NEXT_WP: // wpnav will initialise heading when wpnav's set_destination method is called break; case AUTO_YAW_ROI: // point towards a location held in yaw_look_at_WP sub.yaw_look_at_WP_bearing = ahrs.yaw_sensor; break; case AUTO_YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading // caller should set the yaw_look_at_heading break; case AUTO_YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. sub.yaw_look_ahead_bearing = ahrs.yaw_sensor; break; case AUTO_YAW_RESETTOARMEDYAW: // initial_armed_bearing will be set during arming so no init required break; case AUTO_YAW_RATE: // set target yaw rate to yaw_look_at_heading_slew break; } } // get_auto_heading - returns target heading depending upon auto_yaw_mode // 100hz update rate float ModeGuided::get_auto_heading() { switch (sub.auto_yaw_mode) { case AUTO_YAW_ROI: // point towards a location held in roi_WP return sub.get_roi_yaw(); break; case AUTO_YAW_LOOK_AT_HEADING: // keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed return sub.yaw_look_at_heading; break; case AUTO_YAW_LOOK_AHEAD: // Commanded Yaw to automatically look ahead. return sub.get_look_ahead_yaw(); break; case AUTO_YAW_RESETTOARMEDYAW: // changes yaw to be same as when quad was armed return sub.initial_armed_bearing; break; case AUTO_YAW_CORRECT_XTRACK: { // TODO return current yaw if not in appropriate mode // Bearing of current track (centidegrees) float track_bearing = get_bearing_cd(sub.wp_nav.get_wp_origin().xy(), sub.wp_nav.get_wp_destination().xy()); // Bearing from current position towards intermediate position target (centidegrees) const Vector2f target_vel_xy{position_control->get_vel_target_cms().x, position_control->get_vel_target_cms().y}; float angle_error = 0.0f; if (target_vel_xy.length() >= position_control->get_max_speed_xy_cms() * 0.1f) { const float desired_angle_cd = degrees(target_vel_xy.angle()) * 100.0f; angle_error = wrap_180_cd(desired_angle_cd - track_bearing); } float angle_limited = constrain_float(angle_error, -g.xtrack_angle_limit * 100.0f, g.xtrack_angle_limit * 100.0f); return wrap_360_cd(track_bearing + angle_limited); } break; case AUTO_YAW_LOOK_AT_NEXT_WP: default: // point towards next waypoint. // we don't use wp_bearing because we don't want the vehicle to turn too much during flight return sub.wp_nav.get_yaw(); break; } } // guided_limit_set - set guided timeout and movement limits void ModeGuided::guided_limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm) { guided_limit.timeout_ms = timeout_ms; guided_limit.alt_min_cm = alt_min_cm; guided_limit.alt_max_cm = alt_max_cm; guided_limit.horiz_max_cm = horiz_max_cm; } // guided_limit_init_time_and_pos - initialise guided start time and position as reference for limit checking // only called from AUTO mode's auto_nav_guided_start function void ModeGuided::guided_limit_init_time_and_pos() { // initialise start time guided_limit.start_time = AP_HAL::millis(); // initialise start position from current position guided_limit.start_pos = inertial_nav.get_position_neu_cm(); } // guided_limit_check - returns true if guided mode has breached a limit // used when guided is invoked from the NAV_GUIDED_ENABLE mission command bool ModeGuided::guided_limit_check() { // check if we have passed the timeout if ((guided_limit.timeout_ms > 0) && (AP_HAL::millis() - guided_limit.start_time >= guided_limit.timeout_ms)) { return true; } // get current location const Vector3f& curr_pos = inertial_nav.get_position_neu_cm(); // check if we have gone below min alt if (!is_zero(guided_limit.alt_min_cm) && (curr_pos.z < guided_limit.alt_min_cm)) { return true; } // check if we have gone above max alt if (!is_zero(guided_limit.alt_max_cm) && (curr_pos.z > guided_limit.alt_max_cm)) { return true; } // check if we have gone beyond horizontal limit if (guided_limit.horiz_max_cm > 0.0f) { const float horiz_move = get_horizontal_distance_cm(guided_limit.start_pos.xy(), curr_pos.xy()); if (horiz_move > guided_limit.horiz_max_cm) { return true; } } // if we got this far we must be within limits return false; }