/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* * matrix3.cpp * Copyright (C) Andrew Tridgell 2012 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_Math.h" #define HALF_SQRT_2 0.70710678118654757 // create a rotation matrix given some euler angles // this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf template <typename T> void Matrix3<T>::from_euler(float roll, float pitch, float yaw) { float cp = cosf(pitch); float sp = sinf(pitch); float sr = sinf(roll); float cr = cosf(roll); float sy = sinf(yaw); float cy = cosf(yaw); a.x = cp * cy; a.y = (sr * sp * cy) - (cr * sy); a.z = (cr * sp * cy) + (sr * sy); b.x = cp * sy; b.y = (sr * sp * sy) + (cr * cy); b.z = (cr * sp * sy) - (sr * cy); c.x = -sp; c.y = sr * cp; c.z = cr * cp; } // calculate euler angles from a rotation matrix // this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf template <typename T> void Matrix3<T>::to_euler(float *roll, float *pitch, float *yaw) const { if (pitch != NULL) { *pitch = -safe_asin(c.x); } if (roll != NULL) { *roll = atan2f(c.y, c.z); } if (yaw != NULL) { *yaw = atan2f(b.x, a.x); } } // apply an additional rotation from a body frame gyro vector // to a rotation matrix. template <typename T> void Matrix3<T>::rotate(const Vector3<T> &g) { Matrix3f temp_matrix; temp_matrix.a.x = a.y * g.z - a.z * g.y; temp_matrix.a.y = a.z * g.x - a.x * g.z; temp_matrix.a.z = a.x * g.y - a.y * g.x; temp_matrix.b.x = b.y * g.z - b.z * g.y; temp_matrix.b.y = b.z * g.x - b.x * g.z; temp_matrix.b.z = b.x * g.y - b.y * g.x; temp_matrix.c.x = c.y * g.z - c.z * g.y; temp_matrix.c.y = c.z * g.x - c.x * g.z; temp_matrix.c.z = c.x * g.y - c.y * g.x; (*this) += temp_matrix; } // apply an additional rotation from a body frame gyro vector // to a rotation matrix. template <typename T> void Matrix3<T>::rotateXY(const Vector3<T> &g) { Matrix3f temp_matrix; temp_matrix.a.x = -a.z * g.y; temp_matrix.a.y = a.z * g.x; temp_matrix.a.z = a.x * g.y - a.y * g.x; temp_matrix.b.x = -b.z * g.y; temp_matrix.b.y = b.z * g.x; temp_matrix.b.z = b.x * g.y - b.y * g.x; temp_matrix.c.x = -c.z * g.y; temp_matrix.c.y = c.z * g.x; temp_matrix.c.z = c.x * g.y - c.y * g.x; (*this) += temp_matrix; } // apply an additional inverse rotation to a rotation matrix but // only use X, Y elements from rotation vector template <typename T> void Matrix3<T>::rotateXYinv(const Vector3<T> &g) { Matrix3f temp_matrix; temp_matrix.a.x = a.z * g.y; temp_matrix.a.y = - a.z * g.x; temp_matrix.a.z = - a.x * g.y + a.y * g.x; temp_matrix.b.x = b.z * g.y; temp_matrix.b.y = - b.z * g.x; temp_matrix.b.z = - b.x * g.y + b.y * g.x; temp_matrix.c.x = c.z * g.y; temp_matrix.c.y = - c.z * g.x; temp_matrix.c.z = - c.x * g.y + c.y * g.x; (*this) += temp_matrix; } // multiplication by a vector template <typename T> Vector3<T> Matrix3<T>::operator *(const Vector3<T> &v) const { return Vector3<T>(a.x * v.x + a.y * v.y + a.z * v.z, b.x * v.x + b.y * v.y + b.z * v.z, c.x * v.x + c.y * v.y + c.z * v.z); } // multiplication by a vector, extracting only the xy components template <typename T> Vector2<T> Matrix3<T>::mulXY(const Vector3<T> &v) const { return Vector2<T>(a.x * v.x + a.y * v.y + a.z * v.z, b.x * v.x + b.y * v.y + b.z * v.z); } // multiplication of transpose by a vector template <typename T> Vector3<T> Matrix3<T>::mul_transpose(const Vector3<T> &v) const { return Vector3<T>(a.x * v.x + b.x * v.y + c.x * v.z, a.y * v.x + b.y * v.y + c.y * v.z, a.z * v.x + b.z * v.y + c.z * v.z); } // multiplication by another Matrix3<T> template <typename T> Matrix3<T> Matrix3<T>::operator *(const Matrix3<T> &m) const { Matrix3<T> temp (Vector3<T>(a.x * m.a.x + a.y * m.b.x + a.z * m.c.x, a.x * m.a.y + a.y * m.b.y + a.z * m.c.y, a.x * m.a.z + a.y * m.b.z + a.z * m.c.z), Vector3<T>(b.x * m.a.x + b.y * m.b.x + b.z * m.c.x, b.x * m.a.y + b.y * m.b.y + b.z * m.c.y, b.x * m.a.z + b.y * m.b.z + b.z * m.c.z), Vector3<T>(c.x * m.a.x + c.y * m.b.x + c.z * m.c.x, c.x * m.a.y + c.y * m.b.y + c.z * m.c.y, c.x * m.a.z + c.y * m.b.z + c.z * m.c.z)); return temp; } template <typename T> Matrix3<T> Matrix3<T>::transposed(void) const { return Matrix3<T>(Vector3<T>(a.x, b.x, c.x), Vector3<T>(a.y, b.y, c.y), Vector3<T>(a.z, b.z, c.z)); } template <typename T> void Matrix3<T>::zero(void) { a.x = a.y = a.z = 0; b.x = b.y = b.z = 0; c.x = c.y = c.z = 0; } // only define for float template void Matrix3<float>::zero(void); template void Matrix3<float>::rotate(const Vector3<float> &g); template void Matrix3<float>::rotateXY(const Vector3<float> &g); template void Matrix3<float>::rotateXYinv(const Vector3<float> &g); template void Matrix3<float>::from_euler(float roll, float pitch, float yaw); template void Matrix3<float>::to_euler(float *roll, float *pitch, float *yaw) const; template Vector3<float> Matrix3<float>::operator *(const Vector3<float> &v) const; template Vector3<float> Matrix3<float>::mul_transpose(const Vector3<float> &v) const; template Matrix3<float> Matrix3<float>::operator *(const Matrix3<float> &m) const; template Matrix3<float> Matrix3<float>::transposed(void) const; template Vector2<float> Matrix3<float>::mulXY(const Vector3<float> &v) const;