/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <AP_HAL/AP_HAL.h> #include <AP_Math/crc.h> #include "AP_RangeFinder_LeddarOne.h" #include <AP_SerialManager/AP_SerialManager.h> extern const AP_HAL::HAL& hal; /* The constructor also initialises the rangefinder. Note that this constructor is not called until detect() returns true, so we already know that we should setup the rangefinder */ AP_RangeFinder_LeddarOne::AP_RangeFinder_LeddarOne(RangeFinder::RangeFinder_State &_state, AP_RangeFinder_Params &_params, uint8_t serial_instance) : AP_RangeFinder_Backend(_state, _params) { const AP_SerialManager &serial_manager = AP::serialmanager(); uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance); if (uart != nullptr) { uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance)); } } /* detect if a LeddarOne rangefinder is connected. We'll detect by trying to take a reading on Serial. If we get a result the sensor is there. */ bool AP_RangeFinder_LeddarOne::detect(uint8_t serial_instance) { return AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_Rangefinder, serial_instance) != nullptr; } // read - return last value measured by sensor bool AP_RangeFinder_LeddarOne::get_reading(uint16_t &reading_cm) { uint8_t number_detections; LeddarOne_Status leddarone_status; if (uart == nullptr) { return false; } switch (modbus_status) { case LEDDARONE_MODBUS_STATE_INIT: { uint8_t index = 0; // clear read buffer uint32_t nbytes = uart->available(); while (nbytes-- > 0) { uart->read(); if (++index > LEDDARONE_SERIAL_PORT_MAX) { // LEDDARONE_STATE_ERR_SERIAL_PORT return false; } } // clear buffer and buffer_len memset(read_buffer, 0, sizeof(read_buffer)); read_len = 0; modbus_status = LEDDARONE_MODBUS_STATE_PRE_SEND_REQUEST; } // fall through to next state LEDDARONE_MODBUS_STATE_PRE_SEND_REQUEST // immediately FALLTHROUGH; case LEDDARONE_MODBUS_STATE_PRE_SEND_REQUEST: // send a request message for Modbus function 4 uart->write(send_request_buffer, sizeof(send_request_buffer)); modbus_status = LEDDARONE_MODBUS_STATE_SENT_REQUEST; last_sending_request_ms = AP_HAL::millis(); FALLTHROUGH; case LEDDARONE_MODBUS_STATE_SENT_REQUEST: if (uart->available()) { // change mod_bus status to read available buffer modbus_status = LEDDARONE_MODBUS_STATE_AVAILABLE; last_available_ms = AP_HAL::millis(); } else { if (AP_HAL::millis() - last_sending_request_ms > 200) { // reset mod_bus status to read new buffer // if read_len is zero, send request without initialize modbus_status = (read_len == 0) ? LEDDARONE_MODBUS_STATE_PRE_SEND_REQUEST : LEDDARONE_MODBUS_STATE_INIT; } } break; case LEDDARONE_MODBUS_STATE_AVAILABLE: // parse a response message, set number_detections, detections and sum_distance leddarone_status = parse_response(number_detections); if (leddarone_status == LEDDARONE_STATE_OK) { reading_cm = sum_distance / number_detections; // reset mod_bus status to read new buffer modbus_status = LEDDARONE_MODBUS_STATE_INIT; return true; } // if status is not reading buffer, reset mod_bus status to read new buffer else if (leddarone_status != LEDDARONE_STATE_READING_BUFFER || AP_HAL::millis() - last_available_ms > 200) { // if read_len is zero, send request without initialize modbus_status = (read_len == 0) ? LEDDARONE_MODBUS_STATE_PRE_SEND_REQUEST : LEDDARONE_MODBUS_STATE_INIT; } break; } return false; } /* update the state of the sensor */ void AP_RangeFinder_LeddarOne::update(void) { if (get_reading(state.distance_cm)) { // update range_valid state based on distance measured state.last_reading_ms = AP_HAL::millis(); update_status(); } else if (AP_HAL::millis() - state.last_reading_ms > 200) { set_status(RangeFinder::RangeFinder_NoData); } } /* CRC16 CRC-16-IBM(x16+x15+x2+1) */ bool AP_RangeFinder_LeddarOne::CRC16(uint8_t *aBuffer, uint8_t aLength, bool aCheck) { uint16_t crc = calc_crc_modbus(aBuffer, aLength); uint8_t lCRCLo = LOWBYTE(crc); uint8_t lCRCHi = HIGHBYTE(crc); if (aCheck) { return (aBuffer[aLength] == lCRCLo) && (aBuffer[aLength+1] == lCRCHi); } else { aBuffer[aLength] = lCRCLo; aBuffer[aLength+1] = lCRCHi; return true; } } /* parse a response message from Modbus ----------------------------------------------- [ read buffer packet ] ----------------------------------------------- 0: slave address (LEDDARONE_DEFAULT_ADDRESS) 1: functions code 2: byte count 5-6-3-4: timestamp 7-8: internal temperature 9-10: number of detections 11-12: first distance 13-14: first amplitude 15-16: second distance 17-18: second amplitude 19-20: third distances 21-22: third amplitude 23: CRC Low 24: CRC High ----------------------------------------------- */ LeddarOne_Status AP_RangeFinder_LeddarOne::parse_response(uint8_t &number_detections) { uint8_t index; uint8_t index_offset = LEDDARONE_DETECTION_DATA_INDEX_OFFSET; // read serial uint32_t nbytes = uart->available(); if (nbytes != 0) { for (index=read_len; index<nbytes+read_len; index++) { if (index >= LEDDARONE_READ_BUFFER_SIZE) { return LEDDARONE_STATE_ERR_BAD_RESPONSE; } read_buffer[index] = uart->read(); } read_len += nbytes; if (read_len < LEDDARONE_READ_BUFFER_SIZE) { return LEDDARONE_STATE_READING_BUFFER; } } // lead_len is not 25 byte or function code is not 0x04 if (read_len != LEDDARONE_READ_BUFFER_SIZE || read_buffer[1] != LEDDARONE_MODOBUS_FUNCTION_CODE) { return LEDDARONE_STATE_ERR_BAD_RESPONSE; } // CRC16 if (!CRC16(read_buffer, read_len-2, true)) { return LEDDARONE_STATE_ERR_BAD_CRC; } // number of detections (index:10) number_detections = read_buffer[LEDDARONE_DETECTION_DATA_NUMBER_INDEX]; // if the number of detection is over or zero , it is false if (number_detections > LEDDARONE_DETECTIONS_MAX || number_detections == 0) { return LEDDARONE_STATE_ERR_NUMBER_DETECTIONS; } memset(detections, 0, sizeof(detections)); sum_distance = 0; for (index=0; index<number_detections; index++) { // construct data word from two bytes and convert mm to cm detections[index] = (static_cast<uint16_t>(read_buffer[index_offset])*256 + read_buffer[index_offset+1]) / 10; sum_distance += detections[index]; // add index offset (4) to read next detection data index_offset += LEDDARONE_DETECTION_DATA_OFFSET; } return LEDDARONE_STATE_OK; }