/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Proximity_MAV.h" #if HAL_PROXIMITY_ENABLED #include #include #include extern const AP_HAL::HAL& hal; #define PROXIMITY_MAV_TIMEOUT_MS 500 // distance messages must arrive within this many milliseconds #define PROXIMITY_TIMESTAMP_MSG_TIMEOUT_MS 50 // obstacles will be transferred from temp boundary to actual boundary if mavlink message does not arrive within this many milliseconds // update the state of the sensor void AP_Proximity_MAV::update(void) { // check for timeout and set health status if ((_last_update_ms == 0 || (AP_HAL::millis() - _last_update_ms > PROXIMITY_MAV_TIMEOUT_MS)) && (_last_upward_update_ms == 0 || (AP_HAL::millis() - _last_upward_update_ms > PROXIMITY_MAV_TIMEOUT_MS))) { set_status(AP_Proximity::Status::NoData); } else { set_status(AP_Proximity::Status::Good); } } // get distance upwards in meters. returns true on success bool AP_Proximity_MAV::get_upward_distance(float &distance) const { if ((_last_upward_update_ms != 0) && (AP_HAL::millis() - _last_upward_update_ms <= PROXIMITY_MAV_TIMEOUT_MS)) { distance = _distance_upward; return true; } return false; } // handle mavlink messages void AP_Proximity_MAV::handle_msg(const mavlink_message_t &msg) { switch (msg.msgid) { case (MAVLINK_MSG_ID_DISTANCE_SENSOR): handle_distance_sensor_msg(msg); break; case (MAVLINK_MSG_ID_OBSTACLE_DISTANCE): handle_obstacle_distance_msg(msg); break; case (MAVLINK_MSG_ID_OBSTACLE_DISTANCE_3D): handle_obstacle_distance_3d_msg(msg); break; } } // handle mavlink DISTANCE_SENSOR messages void AP_Proximity_MAV::handle_distance_sensor_msg(const mavlink_message_t &msg) { mavlink_distance_sensor_t packet; mavlink_msg_distance_sensor_decode(&msg, &packet); // store distance to appropriate sector based on orientation field if (packet.orientation <= MAV_SENSOR_ROTATION_YAW_315) { const uint32_t previous_sys_time = _last_update_ms; _last_update_ms = AP_HAL::millis(); // time_diff will check if the new message arrived significantly later than the last message const uint32_t time_diff = _last_update_ms - previous_sys_time; const uint32_t previous_msg_timestamp = _last_msg_update_timestamp_ms; _last_msg_update_timestamp_ms = packet.time_boot_ms; // we will add on to the last fence if the time stamp is the same // provided we got the new obstacle in less than PROXIMITY_TIMESTAMP_MSG_TIMEOUT_MS if ((previous_msg_timestamp != _last_msg_update_timestamp_ms) || (time_diff > PROXIMITY_TIMESTAMP_MSG_TIMEOUT_MS)) { // push data from temp boundary to the main 3-D proximity boundary temp_boundary.update_3D_boundary(boundary); // clear temp boundary for new data temp_boundary.reset(); } // store in meters const float distance = packet.current_distance * 0.01f; const uint8_t sector = packet.orientation; // get the face for this sector const float yaw_angle_deg = sector * 45; const AP_Proximity_Boundary_3D::Face face = boundary.get_face(yaw_angle_deg); _distance_min = packet.min_distance * 0.01f; _distance_max = packet.max_distance * 0.01f; const bool in_range = distance <= _distance_max && distance >= _distance_min; if (in_range && !ignore_reading(yaw_angle_deg, distance, false)) { temp_boundary.add_distance(face, yaw_angle_deg, distance); // update OA database database_push(yaw_angle_deg, distance); } } // store upward distance if (packet.orientation == MAV_SENSOR_ROTATION_PITCH_90) { _distance_upward = packet.current_distance * 0.01f; _last_upward_update_ms = AP_HAL::millis(); } return; } // handle mavlink OBSTACLE_DISTANCE messages void AP_Proximity_MAV::handle_obstacle_distance_msg(const mavlink_message_t &msg) { mavlink_obstacle_distance_t packet; mavlink_msg_obstacle_distance_decode(&msg, &packet); // check increment (message's sector width) float increment; if (!is_zero(packet.increment_f)) { // use increment float increment = packet.increment_f; } else if (packet.increment != 0) { // use increment uint8_t increment = packet.increment; } else { // invalid increment return; } const uint8_t total_distances = MIN(((360.0f / fabsf(increment)) + 0.5f), MAVLINK_MSG_OBSTACLE_DISTANCE_FIELD_DISTANCES_LEN); // usually 72 // set distance min and max _distance_min = packet.min_distance * 0.01f; _distance_max = packet.max_distance * 0.01f; _last_update_ms = AP_HAL::millis(); // get user configured yaw correction from front end const float param_yaw_offset = constrain_float(frontend.get_yaw_correction(state.instance), -360.0f, +360.0f); const float yaw_correction = wrap_360(param_yaw_offset + packet.angle_offset); if (frontend.get_orientation(state.instance) != 0) { increment *= -1; } Vector3f current_pos; Matrix3f body_to_ned; const bool database_ready = database_prepare_for_push(current_pos, body_to_ned); // variables to calculate closest angle and distance for each face AP_Proximity_Boundary_3D::Face face; float face_distance = FLT_MAX; float face_yaw_deg = 0.0f; bool face_distance_valid = false; // reset this boundary to fill with new data boundary.reset(); // iterate over message's sectors for (uint8_t j = 0; j < total_distances; j++) { const uint16_t distance_cm = packet.distances[j]; const float packet_distance_m = distance_cm * 0.01f; const float mid_angle = wrap_360((float)j * increment + yaw_correction); const bool range_check = distance_cm == 0 || distance_cm == 65535 || distance_cm < packet.min_distance || distance_cm > packet.max_distance; if (range_check || ignore_reading(mid_angle, packet_distance_m, false)) { // sanity check failed, ignore this distance value continue; } // get face for this latest reading AP_Proximity_Boundary_3D::Face latest_face = boundary.get_face(mid_angle); if (latest_face != face) { // store previous face if (face_distance_valid) { boundary.set_face_attributes(face, face_yaw_deg, face_distance); } else { boundary.reset_face(face); } // init for latest face face = latest_face; face_distance_valid = false; } // update minimum distance found so far if (!face_distance_valid || (packet_distance_m < face_distance)) { face_yaw_deg = mid_angle; face_distance = packet_distance_m; face_distance_valid = true; } // update Object Avoidance database with Earth-frame point if (database_ready) { database_push(mid_angle, packet_distance_m, _last_update_ms, current_pos, body_to_ned); } } // process the last face if (face_distance_valid) { boundary.set_face_attributes(face, face_yaw_deg, face_distance); } else { boundary.reset_face(face); } return; } // handle mavlink OBSTACLE_DISTANCE_3D messages void AP_Proximity_MAV::handle_obstacle_distance_3d_msg(const mavlink_message_t &msg) { mavlink_obstacle_distance_3d_t packet; mavlink_msg_obstacle_distance_3d_decode(&msg, &packet); const uint32_t previous_sys_time = _last_update_ms; _last_update_ms = AP_HAL::millis(); // time_diff will check if the new message arrived significantly later than the last message const uint32_t time_diff = _last_update_ms - previous_sys_time; const uint32_t previous_msg_timestamp = _last_msg_update_timestamp_ms; _last_msg_update_timestamp_ms = packet.time_boot_ms; if (packet.frame != MAV_FRAME_BODY_FRD) { // we do not support this frame of reference yet return; } if ((previous_msg_timestamp != _last_msg_update_timestamp_ms) || (time_diff > PROXIMITY_TIMESTAMP_MSG_TIMEOUT_MS)) { // push data from temp boundary to the main 3-D proximity boundary because a new timestamp has arrived temp_boundary.update_3D_boundary(boundary); // clear temp boundary for new data temp_boundary.reset(); } _distance_min = packet.min_distance; _distance_max = packet.max_distance; Vector3f current_pos; Matrix3f body_to_ned; const bool database_ready = database_prepare_for_push(current_pos, body_to_ned); const Vector3f obstacle_FRD(packet.x, packet.y, packet.z); const float obstacle_distance = obstacle_FRD.length(); if (obstacle_distance < _distance_min || obstacle_distance > _distance_max || is_zero(obstacle_distance)) { // message isn't healthy return; } // convert to FRU const Vector3f obstacle(obstacle_FRD.x, obstacle_FRD.y, obstacle_FRD.z * -1.0f); // extract yaw and pitch from Obstacle Vector const float yaw = wrap_360(degrees(atan2f(obstacle.y, obstacle.x))); const float pitch = wrap_180(degrees(M_PI_2 - atan2f(obstacle.xy().length(), obstacle.z))); if (ignore_reading(pitch, yaw, obstacle_distance, false)) { // obstacle is probably near ground or out of range return; } // allot to correct layer and sector based on calculated pitch and yaw const AP_Proximity_Boundary_3D::Face face = boundary.get_face(pitch, yaw); temp_boundary.add_distance(face, pitch, yaw, obstacle.length()); if (database_ready) { database_push(yaw, pitch, obstacle.length(),_last_update_ms, current_pos, body_to_ned); } return; } #endif // HAL_PROXIMITY_ENABLED