/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- static void read_control_switch() { static bool switch_debouncer; uint8_t switchPosition = readSwitch(); // If switchPosition = 255 this indicates that the mode control channel input was out of range // If we get this value we do not want to change modes. if(switchPosition == 255) return; if (failsafe.ch3_failsafe || failsafe.ch3_counter > 0) { // when we are in ch3_failsafe mode then RC input is not // working, and we need to ignore the mode switch channel return; } if (hal.scheduler->millis() - failsafe.last_valid_rc_ms > 100) { // only use signals that are less than 0.1s old. return; } // we look for changes in the switch position. If the // RST_SWITCH_CH parameter is set, then it is a switch that can be // used to force re-reading of the control switch. This is useful // when returning to the previous mode after a failsafe or fence // breach. This channel is best used on a momentary switch (such // as a spring loaded trainer switch). if (oldSwitchPosition != switchPosition || (g.reset_switch_chan != 0 && hal.rcin->read(g.reset_switch_chan-1) > RESET_SWITCH_CHAN_PWM)) { if (switch_debouncer == false) { // this ensures that mode switches only happen if the // switch changes for 2 reads. This prevents momentary // spikes in the mode control channel from causing a mode // switch switch_debouncer = true; return; } set_mode((enum FlightMode)(flight_modes[switchPosition].get())); oldSwitchPosition = switchPosition; prev_WP_loc = current_loc; } if (g.reset_mission_chan != 0 && hal.rcin->read(g.reset_mission_chan-1) > RESET_SWITCH_CHAN_PWM) { mission.start(); prev_WP_loc = current_loc; } switch_debouncer = false; if (g.inverted_flight_ch != 0) { // if the user has configured an inverted flight channel, then // fly upside down when that channel goes above INVERTED_FLIGHT_PWM inverted_flight = (control_mode != MANUAL && hal.rcin->read(g.inverted_flight_ch-1) > INVERTED_FLIGHT_PWM); } } static uint8_t readSwitch(void) { uint16_t pulsewidth = hal.rcin->read(g.flight_mode_channel - 1); if (pulsewidth <= 900 || pulsewidth >= 2200) return 255; // This is an error condition if (pulsewidth > 1230 && pulsewidth <= 1360) return 1; if (pulsewidth > 1360 && pulsewidth <= 1490) return 2; if (pulsewidth > 1490 && pulsewidth <= 1620) return 3; if (pulsewidth > 1620 && pulsewidth <= 1749) return 4; // Software Manual if (pulsewidth >= 1750) return 5; // Hardware Manual return 0; } static void reset_control_switch() { oldSwitchPosition = 254; read_control_switch(); } /* called when entering autotune */ static void autotune_start(void) { rollController.autotune_start(); pitchController.autotune_start(); } /* called when exiting autotune */ static void autotune_restore(void) { rollController.autotune_restore(); pitchController.autotune_restore(); } /* are we flying inverted? */ static bool fly_inverted(void) { if (g.inverted_flight_ch != 0 && inverted_flight) { // controlled with INVERTED_FLIGHT_CH return true; } if (control_mode == AUTO && auto_state.inverted_flight) { return true; } return false; }