/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * AP_KDECAN.cpp * * Author: Francisco Ferreira */ #include <AP_HAL/AP_HAL.h> #include <AP_Common/AP_Common.h> #include <AP_HAL/utility/sparse-endian.h> #include <SRV_Channel/SRV_Channel.h> #include <GCS_MAVLink/GCS.h> #include <AP_Scheduler/AP_Scheduler.h> #include <AP_Math/AP_Math.h> #include <AP_Motors/AP_Motors.h> #include <AP_Logger/AP_Logger.h> #include <stdio.h> #include "AP_KDECAN.h" #include <AP_CANManager/AP_CANManager.h> #if HAL_MAX_CAN_PROTOCOL_DRIVERS extern const AP_HAL::HAL& hal; #if HAL_CANMANAGER_ENABLED #define debug_can(level_debug, fmt, args...) do { AP::can().log_text(level_debug, "KDECAN", fmt, ##args); } while (0) #else #define debug_can(level_debug, fmt, args...) #endif #define DEFAULT_NUM_POLES 14 // table of user settable CAN bus parameters const AP_Param::GroupInfo AP_KDECAN::var_info[] = { // @Param: NPOLE // @DisplayName: Number of motor poles // @Description: Sets the number of motor poles to calculate the correct RPM value AP_GROUPINFO("NPOLE", 1, AP_KDECAN, _num_poles, DEFAULT_NUM_POLES), AP_GROUPEND }; const uint16_t AP_KDECAN::SET_PWM_MIN_INTERVAL_US; AP_KDECAN::AP_KDECAN() { AP_Param::setup_object_defaults(this, var_info); debug_can(AP_CANManager::LOG_INFO, "constructed"); } AP_KDECAN *AP_KDECAN::get_kdecan(uint8_t driver_index) { if (driver_index >= AP::can().get_num_drivers() || AP::can().get_driver_type(driver_index) != AP_CANManager::Driver_Type_KDECAN) { return nullptr; } return static_cast<AP_KDECAN*>(AP::can().get_driver(driver_index)); } bool AP_KDECAN::add_interface(AP_HAL::CANIface* can_iface) { if (_can_iface != nullptr) { debug_can(AP_CANManager::LOG_ERROR, "Multiple Interface not supported"); return false; } _can_iface = can_iface; if (_can_iface == nullptr) { debug_can(AP_CANManager::LOG_ERROR, "CAN driver not found"); return false; } if (!_can_iface->is_initialized()) { debug_can(AP_CANManager::LOG_ERROR, "Driver not initialized"); return false; } if (!_can_iface->set_event_handle(&_event_handle)) { debug_can(AP_CANManager::LOG_ERROR, "Cannot add event handle"); return false; } return true; } void AP_KDECAN::init(uint8_t driver_index, bool enable_filters) { _driver_index = driver_index; debug_can(AP_CANManager::LOG_INFO, "starting init"); if (_initialized) { debug_can(AP_CANManager::LOG_ERROR, "already initialized"); return; } if (_can_iface == nullptr) { debug_can(AP_CANManager::LOG_ERROR, "Interface not found"); return; } // find available KDE ESCs frame_id_t id = { { .object_address = ESC_INFO_OBJ_ADDR, .destination_id = BROADCAST_NODE_ID, .source_id = AUTOPILOT_NODE_ID, .priority = 0, .unused = 0 } }; AP_HAL::CANFrame frame { (id.value | AP_HAL::CANFrame::FlagEFF), nullptr, 0 }; if(!_can_iface->send(frame, AP_HAL::micros() + 1000000, 0)) { debug_can(AP_CANManager::LOG_DEBUG, "couldn't send discovery message"); return; } debug_can(AP_CANManager::LOG_DEBUG, "discovery message sent"); uint32_t start = AP_HAL::millis(); // wait 1 second for answers while (AP_HAL::millis() - start < 1000) { AP_HAL::CANFrame esc_id_frame {}; uint64_t rx_time; AP_HAL::CANIface::CanIOFlags flags = 0; int16_t n = _can_iface->receive(esc_id_frame, rx_time, flags); if (n != 1) { continue; } if (!esc_id_frame.isExtended()) { continue; } if (esc_id_frame.dlc != 5) { continue; } id.value = esc_id_frame.id & AP_HAL::CANFrame::MaskExtID; if (id.source_id == BROADCAST_NODE_ID || id.source_id >= (KDECAN_MAX_NUM_ESCS + ESC_NODE_ID_FIRST) || id.destination_id != AUTOPILOT_NODE_ID || id.object_address != ESC_INFO_OBJ_ADDR) { continue; } _esc_present_bitmask |= (1 << (id.source_id - ESC_NODE_ID_FIRST)); _esc_max_node_id = id.source_id - ESC_NODE_ID_FIRST + 1; debug_can(AP_CANManager::LOG_DEBUG, "found ESC id %u", id.source_id); } snprintf(_thread_name, sizeof(_thread_name), "kdecan_%u", driver_index); // start thread for receiving and sending CAN frames if (!hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_KDECAN::loop, void), _thread_name, 4096, AP_HAL::Scheduler::PRIORITY_CAN, 0)) { debug_can(AP_CANManager::LOG_ERROR, "couldn't create thread"); return; } _initialized = true; debug_can(AP_CANManager::LOG_DEBUG, "init done"); return; } void AP_KDECAN::loop() { uint64_t timeout; uint16_t output_buffer[KDECAN_MAX_NUM_ESCS] {}; enumeration_state_t enumeration_state = _enumeration_state; uint64_t enumeration_start = 0; uint8_t enumeration_esc_num = 0; const uint32_t LOOP_INTERVAL_US = MIN(AP::scheduler().get_loop_period_us(), SET_PWM_MIN_INTERVAL_US); uint64_t pwm_last_sent = 0; uint8_t sending_esc_num = 0; uint64_t telemetry_last_request = 0; AP_HAL::CANFrame empty_frame { (0 | AP_HAL::CANFrame::FlagEFF), nullptr, 0 }; while (true) { if (!_initialized) { debug_can(AP_CANManager::LOG_ERROR, "not initialized"); hal.scheduler->delay_microseconds(2000); continue; } uint64_t now = AP_HAL::micros64(); bool read_select; bool write_select; bool select_ret; // get latest enumeration state set from GCS if (_enum_sem.take(1)) { enumeration_state = _enumeration_state; _enum_sem.give(); } else { debug_can(AP_CANManager::LOG_DEBUG, "failed to get enumeration semaphore on loop"); } if (enumeration_state != ENUMERATION_STOPPED) { // check if enumeration timed out if (enumeration_start != 0 && now - enumeration_start >= ENUMERATION_TIMEOUT_MS * 1000) { enumeration_start = 0; WITH_SEMAPHORE(_enum_sem); // check if enumeration state didn't change or was set to stop if (enumeration_state == _enumeration_state || _enumeration_state == ENUMERATION_STOP) { enumeration_state = _enumeration_state = ENUMERATION_STOPPED; } continue; } timeout = now + 1000; switch (enumeration_state) { case ENUMERATION_START: { // send broadcast frame to start enumeration frame_id_t id = { { .object_address = ENUM_OBJ_ADDR, .destination_id = BROADCAST_NODE_ID, .source_id = AUTOPILOT_NODE_ID, .priority = 0, .unused = 0 } }; be16_t data = htobe16((uint16_t) ENUMERATION_TIMEOUT_MS); AP_HAL::CANFrame frame { (id.value | AP_HAL::CANFrame::FlagEFF), (uint8_t*) &data, sizeof(data) }; // wait for write space to be available read_select = false; write_select = true; select_ret = _can_iface->select(read_select, write_select, &frame, timeout); if (select_ret && write_select) { now = AP_HAL::micros64(); timeout = now + ENUMERATION_TIMEOUT_MS * 1000; int8_t res = _can_iface->send(frame, timeout, 0); if (res == 1) { enumeration_start = now; enumeration_esc_num = 0; _esc_present_bitmask = 0; _esc_max_node_id = 0; WITH_SEMAPHORE(_enum_sem); if (enumeration_state == _enumeration_state) { enumeration_state = _enumeration_state = ENUMERATION_RUNNING; } } else if (res == 0) { debug_can(AP_CANManager::LOG_ERROR, "strange buffer full when starting ESC enumeration"); break; } else { debug_can(AP_CANManager::LOG_ERROR, "error sending message to start ESC enumeration, result %d", res); break; } } else { break; } FALLTHROUGH; } case ENUMERATION_RUNNING: { // wait for enumeration messages from ESCs // wait for read data to be available read_select = true; write_select = false; select_ret = _can_iface->select(read_select, write_select, nullptr, timeout); if (select_ret && read_select) { AP_HAL::CANFrame recv_frame; uint64_t rx_time; AP_HAL::CANIface::CanIOFlags flags {}; int16_t res = _can_iface->receive(recv_frame, rx_time, flags); if (res == 1) { frame_id_t id { .value = recv_frame.id & AP_HAL::CANFrame::MaskExtID }; if (rx_time < enumeration_start) { // old message debug_can(AP_CANManager::LOG_DEBUG, "Received old message from ESC id %u", id.source_id); break; } if (id.object_address == UPDATE_NODE_ID_OBJ_ADDR) { // reply from setting new node ID _esc_present_bitmask |= 1 << (id.source_id - ESC_NODE_ID_FIRST); _esc_max_node_id = MAX(_esc_max_node_id, id.source_id - ESC_NODE_ID_FIRST + 1); debug_can(AP_CANManager::LOG_DEBUG, "found ESC id %u", id.source_id); break; } else if (id.object_address != ENUM_OBJ_ADDR) { // discardable frame, only looking for enumeration break; } // try to set node ID for the received ESC while (AP_HAL::micros64() - enumeration_start < ENUMERATION_TIMEOUT_MS * 1000) { // wait for write space to be available id = { { .object_address = UPDATE_NODE_ID_OBJ_ADDR, .destination_id = uint8_t(enumeration_esc_num + ESC_NODE_ID_FIRST), .source_id = AUTOPILOT_NODE_ID, .priority = 0, .unused = 0 } }; AP_HAL::CANFrame send_frame { (id.value | AP_HAL::CANFrame::FlagEFF), (uint8_t*) &recv_frame.data, recv_frame.dlc }; read_select = false; write_select = true; select_ret = _can_iface->select(read_select, write_select, &send_frame, timeout); if (select_ret && write_select) { timeout = enumeration_start + ENUMERATION_TIMEOUT_MS * 1000; res = _can_iface->send(send_frame, timeout, 0); if (res == 1) { enumeration_esc_num++; break; } else if (res == 0) { debug_can(AP_CANManager::LOG_ERROR, "strange buffer full when setting ESC node ID"); } else { debug_can(AP_CANManager::LOG_ERROR, "error sending message to set ESC node ID, result %d", res); } } } } else if (res == 0) { debug_can(AP_CANManager::LOG_ERROR, "strange failed read when getting ESC enumeration message"); } else { debug_can(AP_CANManager::LOG_ERROR, "error receiving ESC enumeration message, result %d", res); } } break; } case ENUMERATION_STOP: { // send broadcast frame to stop enumeration frame_id_t id = { { .object_address = ENUM_OBJ_ADDR, .destination_id = BROADCAST_NODE_ID, .source_id = AUTOPILOT_NODE_ID, .priority = 0, .unused = 0 } }; le16_t data = htole16((uint16_t) ENUMERATION_TIMEOUT_MS); AP_HAL::CANFrame frame { (id.value | AP_HAL::CANFrame::FlagEFF), (uint8_t*) &data, sizeof(data) }; // wait for write space to be available read_select = false; write_select = true; select_ret = _can_iface->select(read_select, read_select, &frame, timeout); if (select_ret && write_select) { timeout = enumeration_start + ENUMERATION_TIMEOUT_MS * 1000; int8_t res = _can_iface->send(frame, timeout, 0); if (res == 1) { enumeration_start = 0; WITH_SEMAPHORE(_enum_sem); if (enumeration_state == _enumeration_state) { enumeration_state = _enumeration_state = ENUMERATION_STOPPED; } } else if (res == 0) { debug_can(AP_CANManager::LOG_ERROR, "strange buffer full when stop ESC enumeration"); } else { debug_can(AP_CANManager::LOG_ERROR, "error sending message to stop ESC enumeration, result %d", res); } } break; } case ENUMERATION_STOPPED: default: debug_can(AP_CANManager::LOG_DEBUG, "something wrong happened, shouldn't be here, enumeration state: %u", enumeration_state); break; } continue; } if (!_esc_present_bitmask) { hal.scheduler->delay(1000); continue; } // always look for received frames timeout = now + LOOP_INTERVAL_US; // check if: // - is currently sending throttle frames, OR // - there are new output values and, a throttle frame was never sent or it's no longer in CAN queue, OR // - it is time to send throttle frames again, regardless of new output values, OR // - it is time to ask for telemetry information bool try_write = false; if (sending_esc_num > 0 || (_new_output.load(std::memory_order_acquire) && (pwm_last_sent == 0 || now - pwm_last_sent > SET_PWM_TIMEOUT_US)) || (pwm_last_sent != 0 && (now - pwm_last_sent > SET_PWM_MIN_INTERVAL_US)) || (now - telemetry_last_request > TELEMETRY_INTERVAL_US)) { // wait for write space or receive frame try_write = true; } else { // don't need to send frame, choose the maximum time we'll wait for receiving a frame uint64_t next_action = MIN(now + LOOP_INTERVAL_US, telemetry_last_request + TELEMETRY_INTERVAL_US); if (pwm_last_sent != 0) { next_action = MIN(next_action, pwm_last_sent + SET_PWM_MIN_INTERVAL_US); } timeout = next_action; } read_select = true; write_select = try_write; // Immediately check if rx buffer not empty select_ret = _can_iface->select(read_select, write_select, &empty_frame, timeout); if (select_ret && read_select) { AP_HAL::CANFrame frame; uint64_t rx_time; AP_HAL::CANIface::CanIOFlags flags {}; int16_t res = _can_iface->receive(frame, rx_time, flags); if (res == 1) { #if HAL_WITH_ESC_TELEM frame_id_t id { .value = frame.id & AP_HAL::CANFrame::MaskExtID }; // check if frame is valid: directed at autopilot, doesn't come from broadcast and ESC was detected before if (id.destination_id == AUTOPILOT_NODE_ID && id.source_id != BROADCAST_NODE_ID && (1 << (id.source_id - ESC_NODE_ID_FIRST) & _esc_present_bitmask)) { switch (id.object_address) { case TELEMETRY_OBJ_ADDR: { if (frame.dlc != 8) { break; } const uint8_t idx = id.source_id - ESC_NODE_ID_FIRST; const uint8_t num_poles = _num_poles > 0 ? _num_poles : DEFAULT_NUM_POLES; update_rpm(idx, uint16_t(uint16_t(frame.data[4] << 8 | frame.data[5]) * 60UL * 2 / num_poles)); TelemetryData t { .temperature_cdeg = int16_t(frame.data[6] * 100), .voltage = float(uint16_t(frame.data[0] << 8 | frame.data[1])) * 0.01f, .current = float(uint16_t(frame.data[2] << 8 | frame.data[3])) * 0.01f, }; update_telem_data(idx, t, AP_ESC_Telem_Backend::TelemetryType::CURRENT | AP_ESC_Telem_Backend::TelemetryType::VOLTAGE | AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE); break; } default: // discard frame break; } } #endif // HAL_WITH_ESC_TELEM } } if (select_ret && try_write && write_select) { now = AP_HAL::micros64(); bool new_output = _new_output.load(std::memory_order_acquire); if (sending_esc_num > 0) { // currently sending throttle frames, check it didn't timeout if (now - pwm_last_sent > SET_PWM_TIMEOUT_US) { debug_can(AP_CANManager::LOG_DEBUG, "timed-out after sending frame to ESC with ID %d", sending_esc_num - 1); sending_esc_num = 0; } } if (sending_esc_num == 0 && new_output) { if (!_rc_out_sem.take(1)) { debug_can(AP_CANManager::LOG_ERROR, "failed to get PWM semaphore on read"); continue; } memcpy(output_buffer, _scaled_output, KDECAN_MAX_NUM_ESCS * sizeof(uint16_t)); _rc_out_sem.give(); } // check if: // - is currently sending throttle frames, OR // - there are new output values and, a throttle frame was never sent or it's no longer in CAN queue, OR // - it is time to send throttle frames again, regardless of new output values if (sending_esc_num > 0 || (new_output && (pwm_last_sent == 0 || now - pwm_last_sent > SET_PWM_TIMEOUT_US)) || (pwm_last_sent != 0 && (now - pwm_last_sent > SET_PWM_MIN_INTERVAL_US))) { for (uint8_t esc_num = sending_esc_num; esc_num < _esc_max_node_id; esc_num++) { if ((_esc_present_bitmask & (1 << esc_num)) == 0) { continue; } be16_t kde_pwm = htobe16(output_buffer[esc_num]); if (hal.util->safety_switch_state() == AP_HAL::Util::SAFETY_DISARMED) { kde_pwm = 0; } frame_id_t id = { { .object_address = SET_PWM_OBJ_ADDR, .destination_id = uint8_t(esc_num + ESC_NODE_ID_FIRST), .source_id = AUTOPILOT_NODE_ID, .priority = 0, .unused = 0 } }; AP_HAL::CANFrame frame { (id.value | AP_HAL::CANFrame::FlagEFF), (uint8_t*) &kde_pwm, sizeof(kde_pwm) }; if (esc_num == 0) { timeout = now + SET_PWM_TIMEOUT_US; } else { timeout = pwm_last_sent + SET_PWM_TIMEOUT_US; } int16_t res = _can_iface->send(frame, timeout, 0); if (res == 1) { if (esc_num == 0) { pwm_last_sent = now; if (new_output) { _new_output.store(false, std::memory_order_release); } } sending_esc_num = (esc_num + 1) % _esc_max_node_id; } else { debug_can(AP_CANManager::LOG_ERROR, "error sending message to ESC with ID %d, result %d", esc_num + ESC_NODE_ID_FIRST, res); } break; } } else if (now - telemetry_last_request > TELEMETRY_INTERVAL_US) { // broadcast telemetry request frame frame_id_t id = { { .object_address = TELEMETRY_OBJ_ADDR, .destination_id = BROADCAST_NODE_ID, .source_id = AUTOPILOT_NODE_ID, .priority = 0, .unused = 0 } }; AP_HAL::CANFrame frame { (id.value | AP_HAL::CANFrame::FlagEFF), nullptr, 0 }; timeout = now + TELEMETRY_TIMEOUT_US; int16_t res = _can_iface->send(frame, timeout, 0); if (res == 1) { telemetry_last_request = now; } else if (res == 0) { debug_can(AP_CANManager::LOG_ERROR, "strange buffer full when sending message requesting telemetry"); } else { debug_can(AP_CANManager::LOG_ERROR, "error sending message requesting telemetry, result %d", res); } } } } } void AP_KDECAN::update() { if (_rc_out_sem.take(1)) { for (uint8_t i = 0; i < KDECAN_MAX_NUM_ESCS; i++) { if ((_esc_present_bitmask & (1 << i)) == 0) { _scaled_output[i] = 0; continue; } _scaled_output[i] = SRV_Channels::srv_channel(i)->get_output_pwm(); } _rc_out_sem.give(); _new_output.store(true, std::memory_order_release); } else { debug_can(AP_CANManager::LOG_DEBUG, "failed to get PWM semaphore on write"); } } bool AP_KDECAN::pre_arm_check(char* reason, uint8_t reason_len) { if (!_enum_sem.take(1)) { snprintf(reason, reason_len ,"enumeration state unknown"); return false; } if (_enumeration_state != ENUMERATION_STOPPED) { snprintf(reason, reason_len, "enumeration running"); _enum_sem.give(); return false; } _enum_sem.give(); uint16_t motors_mask = 0; AP_Motors *motors = AP_Motors::get_singleton(); if (motors) { motors_mask = motors->get_motor_mask(); } uint8_t num_expected_motors = __builtin_popcount(motors_mask); uint8_t num_present_escs = __builtin_popcount(_esc_present_bitmask); if (num_present_escs < num_expected_motors) { snprintf(reason, reason_len, "too few ESCs detected (%u of %u)", (int)num_present_escs, (int)num_expected_motors); return false; } if (num_present_escs > num_expected_motors) { snprintf(reason, reason_len, "too many ESCs detected (%u > %u)", (int)num_present_escs, (int)num_expected_motors); return false; } if (_esc_max_node_id != num_expected_motors) { snprintf(reason, reason_len, "wrong node IDs (%u!=%u), run enumeration", (int)_esc_max_node_id, (int)num_expected_motors); return false; } return true; } bool AP_KDECAN::run_enumeration(bool start_stop) { if (!_enum_sem.take(1)) { debug_can(AP_CANManager::LOG_DEBUG, "failed to get enumeration semaphore on write"); return false; } if (start_stop) { _enumeration_state = ENUMERATION_START; } else if (_enumeration_state != ENUMERATION_STOPPED) { _enumeration_state = ENUMERATION_STOP; } _enum_sem.give(); return true; } #endif // HAL_NUM_CAN_IFACES