/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- #include #if CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN #include "AP_InertialSensor_VRBRAIN.h" const extern AP_HAL::HAL& hal; #include #include #include #include #include #include #include #include AP_InertialSensor_VRBRAIN::AP_InertialSensor_VRBRAIN(AP_InertialSensor &imu) : AP_InertialSensor_Backend(imu), _last_get_sample_timestamp(0) { } /* detect the sensor */ AP_InertialSensor_Backend *AP_InertialSensor_VRBRAIN::detect(AP_InertialSensor &_imu) { AP_InertialSensor_VRBRAIN *sensor = new AP_InertialSensor_VRBRAIN(_imu); if (sensor == NULL) { return NULL; } if (!sensor->_init_sensor()) { delete sensor; return NULL; } return sensor; } bool AP_InertialSensor_VRBRAIN::_init_sensor(void) { // assumes max 3 instances _accel_fd[0] = open(ACCEL_DEVICE_PATH, O_RDONLY); _accel_fd[1] = open(ACCEL_DEVICE_PATH "1", O_RDONLY); _accel_fd[2] = open(ACCEL_DEVICE_PATH "2", O_RDONLY); _gyro_fd[0] = open(GYRO_DEVICE_PATH, O_RDONLY); _gyro_fd[1] = open(GYRO_DEVICE_PATH "1", O_RDONLY); _gyro_fd[2] = open(GYRO_DEVICE_PATH "2", O_RDONLY); _num_accel_instances = 0; _num_gyro_instances = 0; for (uint8_t i=0; i= 0) { _num_accel_instances = i+1; _accel_instance[i] = _imu.register_accel(); } if (_gyro_fd[i] >= 0) { _num_gyro_instances = i+1; _gyro_instance[i] = _imu.register_gyro(); } } if (_num_accel_instances == 0) { return false; } if (_num_gyro_instances == 0) { return false; } _default_filter_hz = _default_filter(); _set_filter_frequency(_imu.get_filter()); return AP_PRODUCT_ID_VRBRAIN; return true; } /* set the filter frequency */ void AP_InertialSensor_VRBRAIN::_set_filter_frequency(uint8_t filter_hz) { if (filter_hz == 0) { filter_hz = _default_filter_hz; } for (uint8_t i=0; i<_num_gyro_instances; i++) { ioctl(_gyro_fd[i], GYROIOCSLOWPASS, filter_hz); } for (uint8_t i=0; i<_num_accel_instances; i++) { ioctl(_accel_fd[i], ACCELIOCSLOWPASS, filter_hz); } } bool AP_InertialSensor_VRBRAIN::update(void) { // get the latest sample from the sensor drivers _get_sample(); for (uint8_t k=0; k<_num_accel_instances; k++) { Vector3f accel = _accel_in[k]; _rotate_and_offset_accel(_accel_instance[k], accel); _last_accel_update_timestamp[k] = _last_accel_timestamp[k]; } for (uint8_t k=0; k<_num_gyro_instances; k++) { Vector3f gyro = _gyro_in[k]; _rotate_and_offset_gyro(_gyro_instance[k], gyro); _last_gyro_update_timestamp[k] = _last_gyro_timestamp[k]; } if (_last_filter_hz != _imu.get_filter()) { _set_filter_frequency(_imu.get_filter()); _last_filter_hz = _imu.get_filter(); } return true; } void AP_InertialSensor_VRBRAIN::_get_sample(void) { for (uint8_t i=0; i<_num_accel_instances; i++) { struct accel_report accel_report; while (_accel_fd[i] != -1 && ::read(_accel_fd[i], &accel_report, sizeof(accel_report)) == sizeof(accel_report) && accel_report.timestamp != _last_accel_timestamp[i]) { _accel_in[i] = Vector3f(accel_report.x, accel_report.y, accel_report.z); _last_accel_timestamp[i] = accel_report.timestamp; } } for (uint8_t i=0; i<_num_gyro_instances; i++) { struct gyro_report gyro_report; while (_gyro_fd[i] != -1 && ::read(_gyro_fd[i], &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report) && gyro_report.timestamp != _last_gyro_timestamp[i]) { _gyro_in[i] = Vector3f(gyro_report.x, gyro_report.y, gyro_report.z); _last_gyro_timestamp[i] = gyro_report.timestamp; } } _last_get_sample_timestamp = hal.scheduler->micros64(); } bool AP_InertialSensor_VRBRAIN::gyro_sample_available(void) { _get_sample(); for (uint8_t i=0; i<_num_gyro_instances; i++) { if (_last_gyro_timestamp[i] != _last_gyro_update_timestamp[i]) { return true; } } return false; } bool AP_InertialSensor_VRBRAIN::accel_sample_available(void) { _get_sample(); for (uint8_t i=0; i<_num_accel_instances; i++) { if (_last_accel_timestamp[i] != _last_accel_update_timestamp[i]) { return true; } } return false; } #endif // CONFIG_HAL_BOARD