/// @file AC_PID_2D.cpp /// @brief Generic PID algorithm #include <AP_Math/AP_Math.h> #include "AC_PID_2D.h" #define AC_PID_2D_FILT_HZ_DEFAULT 20.0f // default input filter frequency #define AC_PID_2D_FILT_HZ_MIN 0.01f // minimum input filter frequency #define AC_PID_2D_FILT_D_HZ_DEFAULT 10.0f // default input filter frequency #define AC_PID_2D_FILT_D_HZ_MIN 0.005f // minimum input filter frequency const AP_Param::GroupInfo AC_PID_2D::var_info[] = { // @Param: P // @DisplayName: PID Proportional Gain // @Description: P Gain which produces an output value that is proportional to the current error value AP_GROUPINFO("P", 0, AC_PID_2D, _kp, 0), // @Param: I // @DisplayName: PID Integral Gain // @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error AP_GROUPINFO("I", 1, AC_PID_2D, _ki, 0), // @Param: IMAX // @DisplayName: PID Integral Maximum // @Description: The maximum/minimum value that the I term can output AP_GROUPINFO("IMAX", 2, AC_PID_2D, _imax, 0), // @Param: FILT // @DisplayName: PID Input filter frequency in Hz // @Description: Input filter frequency in Hz // @Units: Hz AP_GROUPINFO("FILT", 3, AC_PID_2D, _filt_hz, AC_PID_2D_FILT_HZ_DEFAULT), // @Param: D // @DisplayName: PID Derivative Gain // @Description: D Gain which produces an output that is proportional to the rate of change of the error AP_GROUPINFO("D", 4, AC_PID_2D, _kd, 0), // @Param: D_FILT // @DisplayName: D term filter frequency in Hz // @Description: D term filter frequency in Hz // @Units: Hz AP_GROUPINFO("D_FILT", 5, AC_PID_2D, _filt_d_hz, AC_PID_2D_FILT_D_HZ_DEFAULT), AP_GROUPEND }; // Constructor AC_PID_2D::AC_PID_2D(float initial_p, float initial_i, float initial_d, float initial_imax, float initial_filt_hz, float initial_filt_d_hz, float dt) : _dt(dt) { // load parameter values from eeprom AP_Param::setup_object_defaults(this, var_info); _kp = initial_p; _ki = initial_i; _kd = initial_d; _imax = fabsf(initial_imax); filt_hz(initial_filt_hz); filt_d_hz(initial_filt_d_hz); // reset input filter to first value received and derivitive to zero reset_filter(); } // set_dt - set time step in seconds void AC_PID_2D::set_dt(float dt) { // set dt and calculate the input filter alpha _dt = dt; calc_filt_alpha(); calc_filt_alpha_d(); } // filt_hz - set input filter hz void AC_PID_2D::filt_hz(float hz) { _filt_hz.set(fabsf(hz)); // sanity check _filt_hz _filt_hz = MAX(_filt_hz, AC_PID_2D_FILT_HZ_MIN); // calculate the input filter alpha calc_filt_alpha(); } // filt_d_hz - set input filter hz void AC_PID_2D::filt_d_hz(float hz) { _filt_d_hz.set(fabsf(hz)); // sanity check _filt_hz _filt_d_hz = MAX(_filt_d_hz, AC_PID_2D_FILT_D_HZ_MIN); // calculate the input filter alpha calc_filt_alpha_d(); } // set_input - set input to PID controller // input is filtered before the PID controllers are run // this should be called before any other calls to get_p, get_i or get_d void AC_PID_2D::set_input(const Vector2f &input) { // don't process inf or NaN if (!isfinite(input.x) || !isfinite(input.y)) { return; } // reset input filter to value received if (_flags._reset_filter) { _flags._reset_filter = false; _input = input; } // update filter and calculate derivative const Vector2f input_delta = (input - _input) * _filt_alpha; _input += input_delta; set_input_filter_d(input_delta); } // set_input_filter_d - set input to PID controller // only input to the D portion of the controller is filtered // this should be called before any other calls to get_p, get_i or get_d void AC_PID_2D::set_input_filter_d(const Vector2f& input_delta) { // don't process inf or NaN if (!isfinite(input_delta.x) && !isfinite(input_delta.y)) { return; } // update filter and calculate derivative if (is_positive(_dt)) { const Vector2f derivative = input_delta / _dt; const Vector2f delta_derivative = (derivative - _derivative) * _filt_alpha_d; _derivative += delta_derivative; } } Vector2f AC_PID_2D::get_p() const { return (_input * _kp); } Vector2f AC_PID_2D::get_i() { if (!is_zero(_ki) && !is_zero(_dt)) { _integrator += (_input * _ki) * _dt; const float integrator_length = _integrator.length(); if ((integrator_length > _imax) && is_positive(integrator_length)) { _integrator *= (_imax / integrator_length); } return _integrator; } return Vector2f(); } // get_i_shrink - get_i but do not allow integrator to grow in length (it may shrink) Vector2f AC_PID_2D::get_i_shrink() { if (!is_zero(_ki) && !is_zero(_dt)) { const float integrator_length_orig = MIN(_integrator.length(), _imax); _integrator += (_input * _ki) * _dt; const float integrator_length_new = _integrator.length(); if ((integrator_length_new > integrator_length_orig) && is_positive(integrator_length_new)) { _integrator *= (integrator_length_orig / integrator_length_new); } return _integrator; } return Vector2f(); } Vector2f AC_PID_2D::get_d() { // derivative component return Vector2f(_kd * _derivative.x, _kd * _derivative.y); } Vector2f AC_PID_2D::get_pid() { return get_p() + get_i() + get_d(); } void AC_PID_2D::reset_I() { _integrator.zero(); } void AC_PID_2D::reset_filter() { _flags._reset_filter = true; _derivative.x = 0.0f; _derivative.y = 0.0f; _integrator.zero(); } void AC_PID_2D::load_gains() { _kp.load(); _ki.load(); _kd.load(); _imax.load(); _imax = fabsf(_imax); _filt_hz.load(); _filt_d_hz.load(); // calculate the input filter alpha calc_filt_alpha(); calc_filt_alpha_d(); } // save_gains - save gains to eeprom void AC_PID_2D::save_gains() { _kp.save(); _ki.save(); _kd.save(); _imax.save(); _filt_hz.save(); _filt_d_hz.save(); } // calc_filt_alpha - recalculate the input filter alpha void AC_PID_2D::calc_filt_alpha() { if (is_zero(_filt_hz)) { _filt_alpha = 1.0f; return; } // calculate alpha const float rc = 1/(M_2PI*_filt_hz); _filt_alpha = _dt / (_dt + rc); } // calc_filt_alpha - recalculate the input filter alpha void AC_PID_2D::calc_filt_alpha_d() { if (is_zero(_filt_d_hz)) { _filt_alpha_d = 1.0f; return; } // calculate alpha const float rc = 1/(M_2PI*_filt_d_hz); _filt_alpha_d = _dt / (_dt + rc); }