/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * AP_OLC is based on INAV olc.c implemention, thanks @fiam and other contributors. */ #include "AP_OLC.h" #include #include #if HAL_PLUSCODE_ENABLE // This is a port of https://github.com/google/open-location-code/blob/master/c/olc.c // to avoid double floating point math and use integer math as much as possible. #define SEPARATOR_CHAR '+' #define SEPARATOR_POS 8U #define PADDING_CHAR '0' #define ENCODING_BASE 20U #define PAIR_CODE_LEN 10U #define CODE_LEN_MAX 15U #define GRID_COLS 4U #define GRID_ROWS (ENCODING_BASE / GRID_COLS) #define OLC_DEG_MULTIPLIER 10000000U // 1e7 #define LAT_MAX int32_t(90 * OLC_DEG_MULTIPLIER) #define LON_MAX int32_t(180 * OLC_DEG_MULTIPLIER) const int32_t AP_OLC::initial_exponent = floorf(logf(2 * (LON_MAX / OLC_DEG_MULTIPLIER)) / logf(ENCODING_BASE)); const int32_t AP_OLC::grid_size = (1 / powf(ENCODING_BASE, PAIR_CODE_LEN / 2 - (initial_exponent + 1))) * OLC_DEG_MULTIPLIER; const int32_t AP_OLC::initial_resolution = powf(ENCODING_BASE, initial_exponent) * OLC_DEG_MULTIPLIER; constexpr char AP_OLC::olc_alphabet[]; // Compute the latitude precision value for a given code length. Lengths <= 10 // have the same precision for latitude and longitude, but lengths > 10 have // different precisions due to the grid method having fewer columns than rows. float AP_OLC::compute_precision_for_length(int length) { // Magic numbers! if (length <= (int)PAIR_CODE_LEN) { return powf(ENCODING_BASE, floorf((length / -2) + 2)); } return powf(ENCODING_BASE, -3) / powf(5, length - (int)PAIR_CODE_LEN); } int32_t AP_OLC::adjust_latitude(int32_t lat, size_t code_len) { lat = constrain_int32(lat, -LAT_MAX, LAT_MAX); if (lat >= LAT_MAX) { // Subtract half the code precision to get the latitude into the code area. int32_t precision = compute_precision_for_length(code_len) * OLC_DEG_MULTIPLIER; lat -= precision / 2; } return lat; } int32_t AP_OLC::normalize_longitude(int32_t lon) { while (lon < -LON_MAX) { lon += LON_MAX; lon += LON_MAX; } while (lon >= LON_MAX) { lon -= LON_MAX; lon -= LON_MAX; } return lon; } // Encodes positive range lat,lon into a sequence of OLC lat/lon pairs. This // uses pairs of characters (latitude and longitude in that order) to represent // each step in a 20x20 grid. Each code, therefore, has 1/400th the area of // the previous code. unsigned AP_OLC::encode_pairs(uint32_t lat, uint32_t lon, size_t length, char *buf, size_t bufsize) { if ((length + 1) >= bufsize) { buf[0] = '\0'; return 0; } unsigned pos = 0; int32_t resolution = initial_resolution; // Add two digits on each pass. for (size_t digit_count = 0; digit_count < length; digit_count += 2, resolution /= ENCODING_BASE) { size_t digit_value; // Do the latitude - gets the digit for this place and subtracts that // for the next digit. digit_value = lat / resolution; lat -= digit_value * resolution; buf[pos++] = olc_alphabet[digit_value]; // Do the longitude - gets the digit for this place and subtracts that // for the next digit. digit_value = lon / resolution; lon -= digit_value * resolution; buf[pos++] = olc_alphabet[digit_value]; // Should we add a separator here? if (pos == SEPARATOR_POS && pos < length) { buf[pos++] = SEPARATOR_CHAR; } } while (pos < SEPARATOR_POS) { buf[pos++] = PADDING_CHAR; } if (pos == SEPARATOR_POS) { buf[pos++] = SEPARATOR_CHAR; } buf[pos] = '\0'; return pos; } // Encodes a location using the grid refinement method into an OLC string. The // grid refinement method divides the area into a grid of 4x5, and uses a // single character to refine the area. The grid squares use the OLC // characters in order to number the squares as follows: // // R V W X // J M P Q // C F G H // 6 7 8 9 // 2 3 4 5 // // This allows default accuracy OLC codes to be refined with just a single // character. int AP_OLC::encode_grid(uint32_t lat, uint32_t lon, size_t length, char *buf, size_t bufsize) { if ((length + 1) >= bufsize) { buf[0] = '\0'; return 0; } int pos = 0; int32_t lat_grid_size = grid_size; int32_t lon_grid_size = grid_size; lat %= lat_grid_size; lon %= lon_grid_size; for (size_t i = 0; i < length; i++) { int32_t lat_div = lat_grid_size / GRID_ROWS; int32_t lon_div = lon_grid_size / GRID_COLS; if (lat_div == 0 || lon_div == 0) { // This case happens when OLC_DEG_MULTIPLIER doesn't have enough // precision for the requested length. break; } // Work out the row and column. size_t row = lat / lat_div; size_t col = lon / lon_div; lat_grid_size /= GRID_ROWS; lon_grid_size /= GRID_COLS; lat -= row * lat_grid_size; lon -= col * lon_grid_size; buf[pos++] = olc_alphabet[row * GRID_COLS + col]; } buf[pos] = '\0'; return pos; } int AP_OLC::olc_encode(int32_t lat, int32_t lon, size_t length, char *buf, size_t bufsize) { int pos = 0; length = MIN(length, CODE_LEN_MAX); // Adjust latitude and longitude so they fall into positive ranges. uint32_t alat = adjust_latitude(lat, length) + LAT_MAX; uint32_t alon = normalize_longitude(lon) + LON_MAX; pos += encode_pairs(alat, alon, MIN(length, PAIR_CODE_LEN), buf + pos, bufsize - pos); // If the requested length indicates we want grid refined codes. if (length > PAIR_CODE_LEN) { pos += encode_grid(alat, alon, length - PAIR_CODE_LEN, buf + pos, bufsize - pos); } buf[pos] = '\0'; return pos; } #endif