#include "AP_Mount_Servo.h" #if HAL_MOUNT_SERVO_ENABLED extern const AP_HAL::HAL& hal; // init - performs any required initialisation for this instance void AP_Mount_Servo::init() { if (_instance == 0) { _roll_idx = SRV_Channel::k_mount_roll; _tilt_idx = SRV_Channel::k_mount_tilt; _pan_idx = SRV_Channel::k_mount_pan; _open_idx = SRV_Channel::k_mount_open; } else { // this must be the 2nd mount _roll_idx = SRV_Channel::k_mount2_roll; _tilt_idx = SRV_Channel::k_mount2_tilt; _pan_idx = SRV_Channel::k_mount2_pan; _open_idx = SRV_Channel::k_mount2_open; } } // update mount position - should be called periodically void AP_Mount_Servo::update() { switch (get_mode()) { // move mount to a "retracted position" or to a position where a fourth servo can retract the entire mount into the fuselage case MAV_MOUNT_MODE_RETRACT: { _angle_bf_output_deg = _state._retract_angles.get(); // initialise _angle_rad to smooth transition if user changes to RC_TARGETTING _angle_rad.roll = radians(_angle_bf_output_deg.x); _angle_rad.pitch = radians(_angle_bf_output_deg.y); _angle_rad.yaw = radians(_angle_bf_output_deg.z); _angle_rad.yaw_is_ef = false; break; } // move mount to a neutral position, typically pointing forward case MAV_MOUNT_MODE_NEUTRAL: { _angle_bf_output_deg = _state._neutral_angles.get(); // initialise _angle_rad to smooth transition if user changes to RC_TARGETTING _angle_rad.roll = radians(_angle_bf_output_deg.x); _angle_rad.pitch = radians(_angle_bf_output_deg.y); _angle_rad.yaw = radians(_angle_bf_output_deg.z); _angle_rad.yaw_is_ef = false; break; } // point to the angles given by a mavlink message case MAV_MOUNT_MODE_MAVLINK_TARGETING: { switch (mavt_target.target_type) { case MountTargetType::ANGLE: _angle_rad = mavt_target.angle_rad; break; case MountTargetType::RATE: update_angle_target_from_rate(mavt_target.rate_rads, _angle_rad); break; } // update _angle_bf_output_deg based on angle target update_angle_outputs(_angle_rad); break; } // RC radio manual angle control, but with stabilization from the AHRS case MAV_MOUNT_MODE_RC_TARGETING: { // update targets using pilot's RC inputs MountTarget rc_target {}; if (get_rc_rate_target(rc_target)) { update_angle_target_from_rate(rc_target, _angle_rad); } else if (get_rc_angle_target(rc_target)) { _angle_rad = rc_target; } // update _angle_bf_output_deg based on angle target update_angle_outputs(_angle_rad); break; } // point mount to a GPS location case MAV_MOUNT_MODE_GPS_POINT: { if (get_angle_target_to_roi(_angle_rad)) { update_angle_outputs(_angle_rad); } break; } case MAV_MOUNT_MODE_HOME_LOCATION: { if (get_angle_target_to_home(_angle_rad)) { update_angle_outputs(_angle_rad); } break; } case MAV_MOUNT_MODE_SYSID_TARGET: { if (get_angle_target_to_sysid(_angle_rad)) { update_angle_outputs(_angle_rad); } break; } default: //do nothing break; } // move mount to a "retracted position" into the fuselage with a fourth servo const bool mount_open = (get_mode() == MAV_MOUNT_MODE_RETRACT) ? 0 : 1; move_servo(_open_idx, mount_open, 0, 1); // write the results to the servos move_servo(_roll_idx, _angle_bf_output_deg.x*10, _state._roll_angle_min*0.1f, _state._roll_angle_max*0.1f); move_servo(_tilt_idx, _angle_bf_output_deg.y*10, _state._tilt_angle_min*0.1f, _state._tilt_angle_max*0.1f); move_servo(_pan_idx, _angle_bf_output_deg.z*10, _state._pan_angle_min*0.1f, _state._pan_angle_max*0.1f); } // returns true if this mount can control its pan (required for multicopters) bool AP_Mount_Servo::has_pan_control() const { return SRV_Channels::function_assigned(_pan_idx); } // private methods // send_mount_status - called to allow mounts to send their status to GCS using the MOUNT_STATUS message void AP_Mount_Servo::send_mount_status(mavlink_channel_t chan) { mavlink_msg_mount_status_send(chan, 0, 0, _angle_bf_output_deg.y*100, _angle_bf_output_deg.x*100, _angle_bf_output_deg.z*100, _mode); } // update body-frame angle outputs from earth-frame angle targets void AP_Mount_Servo::update_angle_outputs(const MountTarget& angle_rad) { const AP_AHRS &ahrs = AP::ahrs(); // only do the full 3D frame transform if we are stabilising yaw if (_state._stab_pan) { Matrix3f m; // 3 x 3 rotation matrix used as temporary variable in calculations Matrix3f ef_to_cam; // rotation matrix from earth-frame to camera. Desired camera from input. Matrix3f gimbal_target_bf; // rotation matrix from vehicle to camera then Euler angles to the servos Vector3f gimbal_angle_bf_rad; // gimbal angle targets in body-frame euler angles m = ahrs.get_rotation_body_to_ned(); m.transpose(); ef_to_cam.from_euler(angle_rad.roll, angle_rad.pitch, get_ef_yaw_angle(angle_rad)); gimbal_target_bf = m * ef_to_cam; gimbal_target_bf.to_euler(&gimbal_angle_bf_rad.x, &gimbal_angle_bf_rad.y, &gimbal_angle_bf_rad.z); _angle_bf_output_deg.x = _state._stab_roll ? degrees(gimbal_angle_bf_rad.x) : degrees(angle_rad.roll); _angle_bf_output_deg.y = _state._stab_tilt ? degrees(gimbal_angle_bf_rad.y) : degrees(angle_rad.pitch); _angle_bf_output_deg.z = degrees(gimbal_angle_bf_rad.z); } else { // otherwise base roll and pitch on the ahrs roll and pitch angle plus any requested angle _angle_bf_output_deg.x = degrees(angle_rad.roll); _angle_bf_output_deg.y = degrees(angle_rad.pitch); _angle_bf_output_deg.z = degrees(get_bf_yaw_angle(angle_rad)); if (_state._stab_roll) { _angle_bf_output_deg.x -= degrees(ahrs.roll); } if (_state._stab_tilt) { _angle_bf_output_deg.y -= degrees(ahrs.pitch); } // lead filter const Vector3f &gyro = ahrs.get_gyro(); if (_state._stab_roll && !is_zero(_state._roll_stb_lead) && fabsf(ahrs.pitch) < M_PI/3.0f) { // Compute rate of change of euler roll angle float roll_rate = gyro.x + (ahrs.sin_pitch() / ahrs.cos_pitch()) * (gyro.y * ahrs.sin_roll() + gyro.z * ahrs.cos_roll()); _angle_bf_output_deg.x -= degrees(roll_rate) * _state._roll_stb_lead; } if (_state._stab_tilt && !is_zero(_state._pitch_stb_lead)) { // Compute rate of change of euler pitch angle float pitch_rate = ahrs.cos_pitch() * gyro.y - ahrs.sin_roll() * gyro.z; _angle_bf_output_deg.y -= degrees(pitch_rate) * _state._pitch_stb_lead; } } } // closest_limit - returns closest angle to 'angle' taking into account limits. all angles are in degrees * 10 int16_t AP_Mount_Servo::closest_limit(int16_t angle, int16_t angle_min, int16_t angle_max) { // Make sure the angle lies in the interval [-180 .. 180[ degrees while (angle < -1800) angle += 3600; while (angle >= 1800) angle -= 3600; // Make sure the angle limits lie in the interval [-180 .. 180[ degrees while (angle_min < -1800) angle_min += 3600; while (angle_min >= 1800) angle_min -= 3600; while (angle_max < -1800) angle_max += 3600; while (angle_max >= 1800) angle_max -= 3600; // If the angle is outside servo limits, saturate the angle to the closest limit // On a circle the closest angular position must be carefully calculated to account for wrap-around if ((angle < angle_min) && (angle > angle_max)) { // angle error if min limit is used int16_t err_min = angle_min - angle + (angleangle_max ? 0 : 3600); // add 360 degrees if on the "wrong side" angle = err_min