// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- static void init_barometer(bool full_calibration) { gcs_send_text_P(SEVERITY_LOW, PSTR("Calibrating barometer")); if (full_calibration) { barometer.calibrate(); }else{ barometer.update_calibration(); } gcs_send_text_P(SEVERITY_LOW, PSTR("barometer calibration complete")); } // return barometric altitude in centimeters static void read_barometer(void) { barometer.read(); if (should_log(MASK_LOG_IMU)) { Log_Write_Baro(); } baro_alt = barometer.get_altitude() * 100.0f; baro_climbrate = barometer.get_climb_rate() * 100.0f; // run glitch protection and update AP_Notify if home has been initialised baro_glitch.check_alt(); bool report_baro_glitch = (baro_glitch.glitching() && !ap.usb_connected && hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED); if (AP_Notify::flags.baro_glitching != report_baro_glitch) { if (baro_glitch.glitching()) { Log_Write_Error(ERROR_SUBSYSTEM_BARO, ERROR_CODE_BARO_GLITCH); } else { Log_Write_Error(ERROR_SUBSYSTEM_BARO, ERROR_CODE_ERROR_RESOLVED); } AP_Notify::flags.baro_glitching = report_baro_glitch; } } #if CONFIG_SONAR == ENABLED static void init_sonar(void) { sonar.init(); } #endif // return sonar altitude in centimeters static int16_t read_sonar(void) { #if CONFIG_SONAR == ENABLED sonar.update(); // exit immediately if sonar is disabled if (!sonar_enabled || !sonar.healthy()) { sonar_alt_health = 0; return 0; } int16_t temp_alt = sonar.distance_cm(); if (temp_alt >= sonar.min_distance_cm() && temp_alt <= sonar.max_distance_cm() * SONAR_RELIABLE_DISTANCE_PCT) { if ( sonar_alt_health < SONAR_ALT_HEALTH_MAX ) { sonar_alt_health++; } }else{ sonar_alt_health = 0; } #if SONAR_TILT_CORRECTION == 1 // correct alt for angle of the sonar float temp = ahrs.cos_pitch() * ahrs.cos_roll(); temp = max(temp, 0.707f); temp_alt = (float)temp_alt * temp; #endif return temp_alt; #else return 0; #endif } // initialise compass static void init_compass() { if (!compass.init() || !compass.read()) { // make sure we don't pass a broken compass to DCM cliSerial->println_P(PSTR("COMPASS INIT ERROR")); Log_Write_Error(ERROR_SUBSYSTEM_COMPASS,ERROR_CODE_FAILED_TO_INITIALISE); return; } ahrs.set_compass(&compass); } // initialise optical flow sensor static void init_optflow() { #if OPTFLOW == ENABLED // exit immediately if not enabled if (!optflow.enabled()) { return; } // initialise sensor and display error on failure optflow.init(); if (!optflow.healthy()) { cliSerial->print_P(PSTR("Failed to Init OptFlow\n")); Log_Write_Error(ERROR_SUBSYSTEM_OPTFLOW,ERROR_CODE_FAILED_TO_INITIALISE); } #endif // OPTFLOW == ENABLED } // called at 100hz but data from sensor only arrives at 20 Hz #if OPTFLOW == ENABLED static void update_optflow(void) { static uint32_t last_of_update = 0; // exit immediately if not enabled if (!optflow.enabled()) { return; } // read from sensor optflow.update(); // write to log if new data has arrived if (optflow.last_update() != last_of_update) { last_of_update = optflow.last_update(); if (should_log(MASK_LOG_OPTFLOW)) { Log_Write_Optflow(); } } } #endif // OPTFLOW == ENABLED // read_battery - check battery voltage and current and invoke failsafe if necessary // called at 10hz static void read_battery(void) { battery.read(); // update compass with current value if (battery.monitoring() == AP_BATT_MONITOR_VOLTAGE_AND_CURRENT) { compass.set_current(battery.current_amps()); } // check for low voltage or current if the low voltage check hasn't already been triggered // we only check when we're not powered by USB to avoid false alarms during bench tests if (!ap.usb_connected && !failsafe.battery && battery.exhausted(g.fs_batt_voltage, g.fs_batt_mah)) { failsafe_battery_event(); } // log battery info to the dataflash if (should_log(MASK_LOG_CURRENT)) { Log_Write_Current(); } } // read the receiver RSSI as an 8 bit number for MAVLink // RC_CHANNELS_SCALED message void read_receiver_rssi(void) { // avoid divide by zero if (g.rssi_range <= 0) { receiver_rssi = 0; }else{ rssi_analog_source->set_pin(g.rssi_pin); float ret = rssi_analog_source->voltage_average() * 255 / g.rssi_range; receiver_rssi = constrain_int16(ret, 0, 255); } } #if EPM_ENABLED == ENABLED // epm update - moves epm pwm output back to neutral after grab or release is completed void epm_update() { epm.update(); } #endif