#include "Copter.h" /* * Init and run calls for RTL flight mode * * There are two parts to RTL, the high level decision making which controls which state we are in * and the lower implementation of the waypoint or landing controllers within those states */ // rtl_init - initialise rtl controller bool Copter::rtl_init(bool ignore_checks) { if (position_ok() || ignore_checks) { // initialise waypoint and spline controller wp_nav->wp_and_spline_init(); rtl_build_path(!failsafe.terrain); rtl_climb_start(); return true; }else{ return false; } } // re-start RTL with terrain following disabled void Copter::rtl_restart_without_terrain() { // log an error Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_RESTARTED_RTL); if (rtl_path.terrain_used) { rtl_build_path(false); rtl_climb_start(); gcs_send_text(MAV_SEVERITY_CRITICAL,"Restarting RTL - Terrain data missing"); } } // rtl_run - runs the return-to-launch controller // should be called at 100hz or more void Copter::rtl_run() { // check if we need to move to next state if (rtl_state_complete) { switch (rtl_state) { case RTL_InitialClimb: rtl_return_start(); break; case RTL_ReturnHome: rtl_loiterathome_start(); break; case RTL_LoiterAtHome: if (rtl_path.land || failsafe.radio) { rtl_land_start(); }else{ rtl_descent_start(); } break; case RTL_FinalDescent: // do nothing break; case RTL_Land: // do nothing - rtl_land_run will take care of disarming motors break; } } // call the correct run function switch (rtl_state) { case RTL_InitialClimb: rtl_climb_return_run(); break; case RTL_ReturnHome: rtl_climb_return_run(); break; case RTL_LoiterAtHome: rtl_loiterathome_run(); break; case RTL_FinalDescent: rtl_descent_run(); break; case RTL_Land: rtl_land_run(); break; } } // rtl_climb_start - initialise climb to RTL altitude void Copter::rtl_climb_start() { rtl_state = RTL_InitialClimb; rtl_state_complete = false; // RTL_SPEED == 0 means use WPNAV_SPEED if (g.rtl_speed_cms != 0) { wp_nav->set_speed_xy(g.rtl_speed_cms); } // set the destination if (!wp_nav->set_wp_destination(rtl_path.climb_target)) { // this should not happen because rtl_build_path will have checked terrain data was available Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_TO_SET_DESTINATION); set_mode(LAND, MODE_REASON_TERRAIN_FAILSAFE); return; } wp_nav->set_fast_waypoint(true); // hold current yaw during initial climb set_auto_yaw_mode(AUTO_YAW_HOLD); } // rtl_return_start - initialise return to home void Copter::rtl_return_start() { rtl_state = RTL_ReturnHome; rtl_state_complete = false; if (!wp_nav->set_wp_destination(rtl_path.return_target)) { // failure must be caused by missing terrain data, restart RTL rtl_restart_without_terrain(); } // initialise yaw to point home (maybe) set_auto_yaw_mode(get_default_auto_yaw_mode(true)); } // rtl_climb_return_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller // called by rtl_run at 100hz or more void Copter::rtl_climb_return_run() { // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) { #if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain()); attitude_control->set_throttle_out(0,false,g.throttle_filt); #else motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED); // multicopters do not stabilize roll/pitch/yaw when disarmed // reset attitude control targets attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt); #endif // To-Do: re-initialise wpnav targets return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // set motors to full range motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); // run waypoint controller failsafe_terrain_set_status(wp_nav->update_wpnav()); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control->update_z_controller(); // call attitude controller if (auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain()); }else{ // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(),true, get_smoothing_gain()); } // check if we've completed this stage of RTL rtl_state_complete = wp_nav->reached_wp_destination(); } // rtl_loiterathome_start - initialise return to home void Copter::rtl_loiterathome_start() { rtl_state = RTL_LoiterAtHome; rtl_state_complete = false; rtl_loiter_start_time = millis(); // yaw back to initial take-off heading yaw unless pilot has already overridden yaw if(get_default_auto_yaw_mode(true) != AUTO_YAW_HOLD) { set_auto_yaw_mode(AUTO_YAW_RESETTOARMEDYAW); } else { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // rtl_climb_return_descent_run - implements the initial climb, return home and descent portions of RTL which all rely on the wp controller // called by rtl_run at 100hz or more void Copter::rtl_loiterathome_run() { // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) { #if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain()); attitude_control->set_throttle_out(0,false,g.throttle_filt); #else motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED); // multicopters do not stabilize roll/pitch/yaw when disarmed // reset attitude control targets attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt); #endif // To-Do: re-initialise wpnav targets return; } // process pilot's yaw input float target_yaw_rate = 0; if (!failsafe.radio) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); if (!is_zero(target_yaw_rate)) { set_auto_yaw_mode(AUTO_YAW_HOLD); } } // set motors to full range motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); // run waypoint controller failsafe_terrain_set_status(wp_nav->update_wpnav()); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control->update_z_controller(); // call attitude controller if (auto_yaw_mode == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain()); }else{ // roll, pitch from waypoint controller, yaw heading from auto_heading() attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), get_auto_heading(),true, get_smoothing_gain()); } // check if we've completed this stage of RTL if ((millis() - rtl_loiter_start_time) >= (uint32_t)g.rtl_loiter_time.get()) { if (auto_yaw_mode == AUTO_YAW_RESETTOARMEDYAW) { // check if heading is within 2 degrees of heading when vehicle was armed if (labs(wrap_180_cd(ahrs.yaw_sensor-initial_armed_bearing)) <= 200) { rtl_state_complete = true; } } else { // we have loitered long enough rtl_state_complete = true; } } } // rtl_descent_start - initialise descent to final alt void Copter::rtl_descent_start() { rtl_state = RTL_FinalDescent; rtl_state_complete = false; // Set wp navigation target to above home wp_nav->init_loiter_target(wp_nav->get_wp_destination()); // initialise altitude target to stopping point pos_control->set_target_to_stopping_point_z(); // initialise yaw set_auto_yaw_mode(AUTO_YAW_HOLD); } // rtl_descent_run - implements the final descent to the RTL_ALT // called by rtl_run at 100hz or more void Copter::rtl_descent_run() { int16_t roll_control = 0, pitch_control = 0; float target_yaw_rate = 0; // if not auto armed or motor interlock not enabled set throttle to zero and exit immediately if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) { #if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain()); attitude_control->set_throttle_out(0,false,g.throttle_filt); #else motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED); // multicopters do not stabilize roll/pitch/yaw when disarmed attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt); #endif // set target to current position wp_nav->init_loiter_target(); return; } // process pilot's input if (!failsafe.radio) { if ((g.throttle_behavior & THR_BEHAVE_HIGH_THROTTLE_CANCELS_LAND) != 0 && rc_throttle_control_in_filter.get() > LAND_CANCEL_TRIGGER_THR){ Log_Write_Event(DATA_LAND_CANCELLED_BY_PILOT); // exit land if throttle is high if (!set_mode(LOITER, MODE_REASON_THROTTLE_LAND_ESCAPE)) { set_mode(ALT_HOLD, MODE_REASON_THROTTLE_LAND_ESCAPE); } } if (g.land_repositioning) { // apply SIMPLE mode transform to pilot inputs update_simple_mode(); // process pilot's roll and pitch input roll_control = channel_roll->get_control_in(); pitch_control = channel_pitch->get_control_in(); } // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in()); } // set motors to full range motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); // process roll, pitch inputs wp_nav->set_pilot_desired_acceleration(roll_control, pitch_control); // run loiter controller wp_nav->update_loiter(ekfGndSpdLimit, ekfNavVelGainScaler); // call z-axis position controller pos_control->set_alt_target_with_slew(rtl_path.descent_target.alt, G_Dt); pos_control->update_z_controller(); // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate, get_smoothing_gain()); // check if we've reached within 20cm of final altitude rtl_state_complete = abs(rtl_path.descent_target.alt - current_loc.alt) < 20; } // rtl_loiterathome_start - initialise controllers to loiter over home void Copter::rtl_land_start() { rtl_state = RTL_Land; rtl_state_complete = false; // Set wp navigation target to above home wp_nav->init_loiter_target(wp_nav->get_wp_destination()); // initialise position and desired velocity if (!pos_control->is_active_z()) { pos_control->set_alt_target_to_current_alt(); pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z()); } // initialise yaw set_auto_yaw_mode(AUTO_YAW_HOLD); } // rtl_returnhome_run - return home // called by rtl_run at 100hz or more void Copter::rtl_land_run() { // if not auto armed or landing completed or motor interlock not enabled set throttle to zero and exit immediately if (!motors->armed() || !ap.auto_armed || ap.land_complete || !motors->get_interlock()) { #if FRAME_CONFIG == HELI_FRAME // Helicopters always stabilize roll/pitch/yaw // call attitude controller attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(0, 0, 0, get_smoothing_gain()); attitude_control->set_throttle_out(0,false,g.throttle_filt); #else motors->set_desired_spool_state(AP_Motors::DESIRED_SPIN_WHEN_ARMED); // multicopters do not stabilize roll/pitch/yaw when disarmed attitude_control->set_throttle_out_unstabilized(0,true,g.throttle_filt); #endif // set target to current position wp_nav->init_loiter_target(); // disarm when the landing detector says we've landed if (ap.land_complete) { init_disarm_motors(); } // check if we've completed this stage of RTL rtl_state_complete = ap.land_complete; return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED); land_run_horizontal_control(); land_run_vertical_control(); // check if we've completed this stage of RTL rtl_state_complete = ap.land_complete; } void Copter::rtl_build_path(bool terrain_following_allowed) { // origin point is our stopping point Vector3f stopping_point; pos_control->get_stopping_point_xy(stopping_point); pos_control->get_stopping_point_z(stopping_point); rtl_path.origin_point = Location_Class(stopping_point); rtl_path.origin_point.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_HOME); // compute return target rtl_compute_return_target(terrain_following_allowed); // climb target is above our origin point at the return altitude rtl_path.climb_target = Location_Class(rtl_path.origin_point.lat, rtl_path.origin_point.lng, rtl_path.return_target.alt, rtl_path.return_target.get_alt_frame()); // descent target is below return target at rtl_alt_final rtl_path.descent_target = Location_Class(rtl_path.return_target.lat, rtl_path.return_target.lng, g.rtl_alt_final, Location_Class::ALT_FRAME_ABOVE_HOME); // set land flag rtl_path.land = g.rtl_alt_final <= 0; } // compute the return target - home or rally point // return altitude in cm above home at which vehicle should return home // return target's altitude is updated to a higher altitude that the vehicle can safely return at (frame may also be set) void Copter::rtl_compute_return_target(bool terrain_following_allowed) { // set return target to nearest rally point or home position (Note: alt is absolute) #if AC_RALLY == ENABLED rtl_path.return_target = rally.calc_best_rally_or_home_location(current_loc, ahrs.get_home().alt); #else rtl_path.return_target = ahrs.get_home(); #endif // curr_alt is current altitude above home or above terrain depending upon use_terrain int32_t curr_alt = current_loc.alt; // decide if we should use terrain altitudes rtl_path.terrain_used = terrain_use() && terrain_following_allowed; if (rtl_path.terrain_used) { // attempt to retrieve terrain alt for current location, stopping point and origin int32_t origin_terr_alt, return_target_terr_alt; if (!rtl_path.origin_point.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, origin_terr_alt) || !rtl_path.return_target.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, return_target_terr_alt) || !current_loc.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_TERRAIN, curr_alt)) { rtl_path.terrain_used = false; Log_Write_Error(ERROR_SUBSYSTEM_TERRAIN, ERROR_CODE_MISSING_TERRAIN_DATA); } } // convert return-target alt (which is an absolute alt) to alt-above-home or alt-above-terrain if (!rtl_path.terrain_used || !rtl_path.return_target.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_TERRAIN)) { if (!rtl_path.return_target.change_alt_frame(Location_Class::ALT_FRAME_ABOVE_HOME)) { // this should never happen but just in case rtl_path.return_target.set_alt_cm(0, Location_Class::ALT_FRAME_ABOVE_HOME); } rtl_path.terrain_used = false; } // set new target altitude to return target altitude // Note: this is alt-above-home or terrain-alt depending upon use_terrain // Note: ignore negative altitudes which could happen if user enters negative altitude for rally point or terrain is higher at rally point compared to home int32_t target_alt = MAX(rtl_path.return_target.alt, 0); // increase target to maximum of current altitude + climb_min and rtl altitude target_alt = MAX(target_alt, curr_alt + MAX(0, g.rtl_climb_min)); target_alt = MAX(target_alt, MAX(g.rtl_altitude, RTL_ALT_MIN)); // reduce climb if close to return target float rtl_return_dist_cm = rtl_path.return_target.get_distance(rtl_path.origin_point) * 100.0f; // don't allow really shallow slopes if (g.rtl_cone_slope >= RTL_MIN_CONE_SLOPE) { target_alt = MAX(curr_alt, MIN(target_alt, MAX(rtl_return_dist_cm*g.rtl_cone_slope, curr_alt+RTL_ABS_MIN_CLIMB))); } // set returned target alt to new target_alt rtl_path.return_target.set_alt_cm(target_alt, rtl_path.terrain_used ? Location_Class::ALT_FRAME_ABOVE_TERRAIN : Location_Class::ALT_FRAME_ABOVE_HOME); #if AC_FENCE == ENABLED // ensure not above fence altitude if alt fence is enabled // Note: because the rtl_path.climb_target's altitude is simply copied from the return_target's altitude, // if terrain altitudes are being used, the code below which reduces the return_target's altitude can lead to // the vehicle not climbing at all as RTL begins. This can be overly conservative and it might be better // to apply the fence alt limit independently on the origin_point and return_target if ((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) { // get return target as alt-above-home so it can be compared to fence's alt if (rtl_path.return_target.get_alt_cm(Location_Class::ALT_FRAME_ABOVE_HOME, target_alt)) { float fence_alt = fence.get_safe_alt_max()*100.0f; if (target_alt > fence_alt) { // reduce target alt to the fence alt rtl_path.return_target.alt -= (target_alt - fence_alt); } } } #endif // ensure we do not descend rtl_path.return_target.alt = MAX(rtl_path.return_target.alt, curr_alt); }