/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* Sailboat simulator class see explanation of lift and drag explained here: https://en.wikipedia.org/wiki/Forces_on_sails To-Do: add heel handling by calculating lateral force from wind vs gravity force from heel to arrive at roll rate or acceleration */ #include "SIM_Sailboat.h" #include <AP_Math/AP_Math.h> #include <AP_AHRS/AP_AHRS.h> #include <string.h> #include <stdio.h> extern const AP_HAL::HAL& hal; namespace SITL { #define STEERING_SERVO_CH 0 // steering controlled by servo output 1 #define MAINSAIL_SERVO_CH 3 // main sail controlled by servo output 4 #define THROTTLE_SERVO_CH 2 // throttle controlled by servo output 3 #define DIRECT_WING_SERVO_CH 4 // very roughly sort of a stability factors for waves #define WAVE_ANGLE_GAIN 1 #define WAVE_HEAVE_GAIN 1 Sailboat::Sailboat(const char *frame_str) : Aircraft(frame_str), steering_angle_max(35), turning_circle(1.8), sail_area(1.0) { motor_connected = (strcmp(frame_str, "sailboat-motor") == 0); lock_step_scheduled = true; } // calculate the lift and drag as values from 0 to 1 // given an apparent wind speed in m/s and angle-of-attack in degrees void Sailboat::calc_lift_and_drag(float wind_speed, float angle_of_attack_deg, float& lift, float& drag) const { const uint16_t index_width_deg = 10; const uint8_t index_max = ARRAY_SIZE(lift_curve) - 1; // Convert to expected range angle_of_attack_deg = wrap_180(angle_of_attack_deg); // assume a symmetrical airfoil const float aoa = fabs(angle_of_attack_deg); // check extremes if (aoa <= 0.0f) { lift = lift_curve[0]; drag = drag_curve[0]; } else if (aoa >= index_max * index_width_deg) { lift = lift_curve[index_max]; drag = drag_curve[index_max]; } else { uint8_t index = constrain_int16(aoa / index_width_deg, 0, index_max); float remainder = aoa - (index * index_width_deg); lift = linear_interpolate(lift_curve[index], lift_curve[index+1], remainder, 0.0f, index_width_deg); drag = linear_interpolate(drag_curve[index], drag_curve[index+1], remainder, 0.0f, index_width_deg); } // apply scaling by wind speed lift *= wind_speed * sail_area; drag *= wind_speed * sail_area; if (is_negative(angle_of_attack_deg)) { // invert lift for negative aoa lift *= -1; } } // return turning circle (diameter) in meters for steering angle proportion in the range -1 to +1 float Sailboat::get_turn_circle(float steering) const { if (is_zero(steering)) { return 0; } return turning_circle * sinf(radians(steering_angle_max)) / sinf(radians(steering * steering_angle_max)); } // return yaw rate in deg/sec given a steering input (in the range -1 to +1) and speed in m/s float Sailboat::get_yaw_rate(float steering, float speed) const { if (is_zero(steering) || is_zero(speed)) { return 0; } float d = get_turn_circle(steering); float c = M_PI * d; float t = c / speed; float rate = 360.0f / t; return rate; } // return lateral acceleration in m/s/s given a steering input (in the range -1 to +1) and speed in m/s float Sailboat::get_lat_accel(float steering, float speed) const { float yaw_rate = get_yaw_rate(steering, speed); float accel = radians(yaw_rate) * speed; return accel; } // simulate basic waves / swell void Sailboat::update_wave(float delta_time) { const float wave_heading = sitl->wave.direction; const float wave_speed = sitl->wave.speed; const float wave_lenght = sitl->wave.length; const float wave_amp = sitl->wave.amp; // apply rate propositional to error between boat angle and water angle // this gives a 'stability' effect float r, p, y; dcm.to_euler(&r, &p, &y); // if not armed don't do waves, to allow gyro init if (sitl->wave.enable == 0 || !hal.util->get_soft_armed() || is_zero(wave_amp) ) { wave_gyro = Vector3f(-r,-p,0.0f) * WAVE_ANGLE_GAIN; wave_heave = -velocity_ef.z * WAVE_HEAVE_GAIN; wave_phase = 0.0f; return; } // calculate the sailboat speed in the direction of the wave const float boat_speed = velocity_ef.x * sinf(radians(wave_heading)) + velocity_ef.y * cosf(radians(wave_heading)); // update the wave phase const float aprarent_wave_distance = (wave_speed - boat_speed) * delta_time; const float apparent_wave_phase_change = (aprarent_wave_distance / wave_lenght) * M_2PI; wave_phase += apparent_wave_phase_change; wave_phase = wrap_2PI(wave_phase); // calculate the angles at this phase on the wave // use basic sine wave, dy/dx of sine = cosine // atan( cosine ) = wave angle const float wave_slope = (wave_amp * 0.5f) * (M_2PI / wave_lenght) * cosf(wave_phase); const float wave_angle = atanf(wave_slope); // convert wave angle to vehicle frame const float heading_dif = wave_heading - y; float angle_error_x = (sinf(heading_dif) * wave_angle) - r; float angle_error_y = (cosf(heading_dif) * wave_angle) - p; // apply gain wave_gyro.x = angle_error_x * WAVE_ANGLE_GAIN; wave_gyro.y = angle_error_y * WAVE_ANGLE_GAIN; wave_gyro.z = 0.0f; // calculate wave height (NED) if (sitl->wave.enable == 2) { wave_heave = (wave_slope - velocity_ef.z) * WAVE_HEAVE_GAIN; } else { wave_heave = 0.0f; } } /* update the sailboat simulation by one time step */ void Sailboat::update(const struct sitl_input &input) { // update wind update_wind(input); // in sailboats the steering controls the rudder, the throttle controls the main sail position float steering = 2*((input.servos[STEERING_SERVO_CH]-1000)/1000.0f - 0.5f); // calculate apparent wind in earth-frame (this is the direction the wind is coming from) // Note than the SITL wind direction is defined as the direction the wind is travelling to // This is accounted for in these calculations Vector3f wind_apparent_ef = wind_ef + velocity_ef; const float wind_apparent_dir_ef = degrees(atan2f(wind_apparent_ef.y, wind_apparent_ef.x)); const float wind_apparent_speed = safe_sqrt(sq(wind_apparent_ef.x)+sq(wind_apparent_ef.y)); const float wind_apparent_dir_bf = wrap_180(wind_apparent_dir_ef - degrees(AP::ahrs().yaw)); // set RPM and airspeed from wind speed, allows to test RPM and Airspeed wind vane back end in SITL rpm[0] = wind_apparent_speed; airspeed_pitot = wind_apparent_speed; float aoa_deg = 0.0f; if (sitl->sail_type.get() == 1) { // directly actuated wing float wing_angle_bf = constrain_float((input.servos[DIRECT_WING_SERVO_CH]-1500)/500.0f * 90.0f, -90.0f, 90.0f); aoa_deg = wind_apparent_dir_bf - wing_angle_bf; } else { // mainsail with sheet // calculate mainsail angle from servo output 4, 0 to 90 degrees float mainsail_angle_bf = constrain_float((input.servos[MAINSAIL_SERVO_CH]-1000)/1000.0f * 90.0f, 0.0f, 90.0f); // calculate angle-of-attack from wind to mainsail, cannot have negative angle of attack, sheet would go slack aoa_deg = MAX(fabsf(wind_apparent_dir_bf) - mainsail_angle_bf, 0); if (is_negative(wind_apparent_dir_bf)) { // take into account the current tack aoa_deg *= -1; } } // calculate Lift force (perpendicular to wind direction) and Drag force (parallel to wind direction) float lift_wf, drag_wf; calc_lift_and_drag(wind_apparent_speed, aoa_deg, lift_wf, drag_wf); // rotate lift and drag from wind frame into body frame const float sin_rot_rad = sinf(radians(wind_apparent_dir_bf)); const float cos_rot_rad = cosf(radians(wind_apparent_dir_bf)); const float force_fwd = (lift_wf * sin_rot_rad) - (drag_wf * cos_rot_rad); // how much time has passed? float delta_time = frame_time_us * 1.0e-6f; // speed in m/s in body frame Vector3f velocity_body = dcm.transposed() * velocity_ef_water; // speed along x axis, +ve is forward float speed = velocity_body.x; // yaw rate in degrees/s float yaw_rate = get_yaw_rate(steering, speed); gyro = Vector3f(0,0,radians(yaw_rate)) + wave_gyro; // update attitude dcm.rotate(gyro * delta_time); dcm.normalize(); // hull drag float hull_drag = sq(speed) * 0.5f; if (!is_positive(speed)) { hull_drag *= -1.0f; } // throttle force (for motor sailing) // gives throttle force == hull drag at 10m/s float throttle_force = 0.0f; if (motor_connected) { const uint16_t throttle_out = constrain_int16(input.servos[THROTTLE_SERVO_CH], 1000, 2000); throttle_force = (throttle_out-1500) * 0.1f; } // accel in body frame due acceleration from sail and deceleration from hull friction accel_body = Vector3f((throttle_force + force_fwd) - hull_drag, 0, 0); accel_body /= mass; // add in accel due to direction change accel_body.y += radians(yaw_rate) * speed; // now in earth frame // remove roll and pitch effects from waves float r, p, y; dcm.to_euler(&r, &p, &y); Matrix3f temp_dcm; temp_dcm.from_euler(0.0f, 0.0f, y); Vector3f accel_earth = temp_dcm * accel_body; // we are on the ground, so our vertical accel is zero accel_earth.z = 0 + wave_heave; // work out acceleration as seen by the accelerometers. It sees the kinematic // acceleration (ie. real movement), plus gravity accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS)); // tide calcs Vector3f tide_velocity_ef; if (hal.util->get_soft_armed() && !is_zero(sitl->tide.speed) ) { tide_velocity_ef.x = -cosf(radians(sitl->tide.direction)) * sitl->tide.speed; tide_velocity_ef.y = -sinf(radians(sitl->tide.direction)) * sitl->tide.speed; tide_velocity_ef.z = 0.0f; } // new velocity vector velocity_ef_water += accel_earth * delta_time; velocity_ef = velocity_ef_water + tide_velocity_ef; // new position vector position += (velocity_ef * delta_time).todouble(); // update lat/lon/altitude update_position(); time_advance(); // update magnetic field update_mag_field_bf(); // update wave calculations update_wave(delta_time); } } // namespace SITL