/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_BoardLED2.h" #include "AP_Notify.h" // show all status on only 2 leds #if defined(HAL_GPIO_A_LED_PIN) && defined(HAL_GPIO_B_LED_PIN) static_assert((HAL_GPIO_A_LED_PIN != HAL_GPIO_B_LED_PIN), "Duplicate LED assignments detected"); extern const AP_HAL::HAL& hal; bool AP_BoardLED2::init(void) { // setup the main LEDs as outputs hal.gpio->pinMode(HAL_GPIO_A_LED_PIN, HAL_GPIO_OUTPUT); hal.gpio->pinMode(HAL_GPIO_B_LED_PIN, HAL_GPIO_OUTPUT); // turn all lights off hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF); hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_OFF); _sat_cnt=0; save_trim_counter = 0; arm_counter = 0; return true; } /* main update function called at 50Hz */ void AP_BoardLED2::update(void) { _counter++; // we never want to update LEDs at a higher than 16Hz rate if (_counter % 3 != 0) { return; } // counter2 used to drop frequency down to 16hz uint8_t counter2 = _counter / 3; // initialising if (AP_Notify::flags.initialising) { // blink LEDs A at 8Hz (full cycle) during initialisation hal.gpio->write(HAL_GPIO_A_LED_PIN, (counter2 & 1) ? HAL_GPIO_LED_ON : HAL_GPIO_LED_OFF); return; } if ((counter2 & 0x2) == 0) { save_trim_counter++; } bool led_a_used=false; // save trim and ESC calibration if (AP_Notify::flags.save_trim || AP_Notify::flags.esc_calibration) { switch(save_trim_counter) { case 0: hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_OFF); hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); break; case 1: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF); hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_ON); break; default: save_trim_counter = -1; break; } return; } if(AP_Notify::flags.compass_cal_running || AP_Notify::flags.temp_cal_running){ // compass calibration or IMU temperature calibration switch(save_trim_counter) { case 0: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); // short blinks by both LEDs hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_ON); break; case 1: case 2: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF); hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_OFF); break; case 3: case 4: case 5: case 6: case 7: break; default: // reset counter to restart the sequence save_trim_counter = -1; break; } return; } if(AP_Notify::events.autotune_complete){ switch(save_trim_counter) { case 0: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); // short darkening break; case 1: case 2: case 3: case 4: case 5: case 6: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF); break; case 7: break; default: // reset counter to restart the sequence save_trim_counter = -1; break; } led_a_used=true; } if(AP_Notify::events.autotune_failed){ switch(save_trim_counter) { case 0: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); // short double darkening break; case 1: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF); break; case 2: case 3: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); break; case 4: case 5: case 6: case 7: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF); break; default: // reset counter to restart the sequence save_trim_counter = -1; break; } led_a_used=true; } // arming light if(!led_a_used) { if (AP_Notify::flags.armed) { if(AP_Notify::flags.failsafe_battery){// blink slowly (around 2Hz) if ((counter2 & 0x7) == 0) { hal.gpio->toggle(HAL_GPIO_A_LED_PIN); } }else if(AP_Notify::flags.failsafe_radio || AP_Notify::flags.failsafe_gcs){// blink fast (around 4Hz) if ((counter2 & 0x3) == 0) { hal.gpio->toggle(HAL_GPIO_A_LED_PIN); } } else { // ARM led solid hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); } }else{ if ((counter2 & 0x2) == 0) { arm_counter++; } if (AP_Notify::flags.pre_arm_check) { // passed pre-arm checks so slower single flash switch(arm_counter) { case 0: case 1: case 2: case 3: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); break; case 4: case 5: case 6: case 7: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF); break; default: // reset counter to restart the sequence arm_counter = -1; break; } }else{ // failed pre-arm checks so double flash switch(arm_counter) { case 0: case 1: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); break; case 2: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF); break; case 3: case 4: hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_ON); break; case 5: case 6: case 7: // add one tick to do period be a multiple of the second hal.gpio->write(HAL_GPIO_A_LED_PIN, HAL_GPIO_LED_OFF); break; default: arm_counter = -1; break; } } } } // gps light switch (AP_Notify::flags.gps_status) { case 0: case 1: // no GPS attached or no lock - be dark hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_OFF); break; case 2: // 2d lock case 3:// 3d lock default: // show number of sats if ((counter2 & 0x2) == 0) { _sat_cnt++; } uint16_t sats = AP_Notify::flags.gps_num_sats; if(_sat_cnt<8) { // pause between pulses hal.gpio->write(HAL_GPIO_B_LED_PIN, HAL_GPIO_LED_OFF); } else if(_sat_cnt< (8 + (sats-6)*2) ) { hal.gpio->toggle(HAL_GPIO_B_LED_PIN); // 2Hz } else { _sat_cnt=-1; } break; } } #else bool AP_BoardLED2::init(void) {return true;} void AP_BoardLED2::update(void) {return;} #endif