// // Unit tests for the AP_Math euler code // #include <AP_HAL/AP_HAL.h> #include <AP_Math/AP_Math.h> void setup(); void loop(); void test_matrix_rotate(void); void test_frame_transforms(void); void test_conversions(void); void test_quaternion_eulers(void); void test_matrix_eulers(void); const AP_HAL::HAL& hal = AP_HAL::get_HAL(); #define SHOW_POLES_BREAKDOWN 0 static float rad_diff(float rad1, float rad2) { float diff = rad1 - rad2; if (diff > M_PI) { diff -= 2 * M_PI; } if (diff < -M_PI) { diff += 2 * M_PI; } return fabsf(diff); } static void check_result(const char *msg, float roll, float pitch, float yaw, float roll2, float pitch2, float yaw2) { if (isnan(roll2) || isnan(pitch2) || isnan(yaw2)) { hal.console->printf("%s NAN eulers roll=%f pitch=%f yaw=%f\n", msg, (double)roll, (double)pitch, (double)yaw); } if (rad_diff(roll2,roll) > ToRad(179)) { // reverse all 3 roll2 += fmodf(roll2 + M_PI, 2 * M_PI); pitch2 += fmodf(pitch2 + M_PI, 2 * M_PI); yaw2 += fmodf(yaw2 + M_PI, 2 * M_PI); } if (rad_diff(roll2,roll) > 0.01f || rad_diff(pitch2, pitch) > 0.01f || rad_diff(yaw2, yaw) > 0.01f) { if (pitch >= M_PI/2 || pitch <= -M_PI/2 || ToDeg(rad_diff(pitch, M_PI/2)) < 1 || ToDeg(rad_diff(pitch, -M_PI/2)) < 1) { // we expect breakdown at these poles #if SHOW_POLES_BREAKDOWN hal.console->printf( "%s breakdown eulers roll=%f/%f pitch=%f/%f yaw=%f/%f\n", msg, (double)ToDeg(roll), (double)ToDeg(roll2), (double)ToDeg(pitch), (double)ToDeg(pitch2), (double)ToDeg(yaw), (double)ToDeg(yaw2)); #endif } else { hal.console->printf( "%s incorrect eulers roll=%f/%f pitch=%f/%f yaw=%f/%f\n", msg, (double)ToDeg(roll), (double)ToDeg(roll2), (double)ToDeg(pitch), (double)ToDeg(pitch2), (double)ToDeg(yaw), (double)ToDeg(yaw2)); } } } static void test_euler(float roll, float pitch, float yaw) { Matrix3f m; float roll2, pitch2, yaw2; m.from_euler(roll, pitch, yaw); m.to_euler(&roll2, &pitch2, &yaw2); check_result("test_euler", roll, pitch, yaw, roll2, pitch2, yaw2); } static const float angles[] = { 0, M_PI/8, M_PI/4, M_PI/2, M_PI, -M_PI/8, -M_PI/4, -M_PI/2, -M_PI}; void test_matrix_eulers(void) { uint8_t N = ARRAY_SIZE(angles); hal.console->printf("rotation matrix unit tests\n\n"); for (uint8_t i = 0; i < N; i++) for (uint8_t j = 0; j < N; j++) for (uint8_t k = 0; k < N; k++) test_euler(angles[i], angles[j], angles[k]); hal.console->printf("tests done\n\n"); } static void test_quaternion(float roll, float pitch, float yaw) { Quaternion q; Matrix3f m; float roll2, pitch2, yaw2; q.from_euler(roll, pitch, yaw); q.to_euler(roll2, pitch2, yaw2); check_result("test_quaternion1", roll, pitch, yaw, roll2, pitch2, yaw2); m.from_euler(roll, pitch, yaw); m.to_euler(&roll2, &pitch2, &yaw2); check_result("test_quaternion2", roll, pitch, yaw, roll2, pitch2, yaw2); m.from_euler(roll, pitch, yaw); q.from_rotation_matrix(m); q.to_euler(roll2, pitch2, yaw2); check_result("test_quaternion3", roll, pitch, yaw, roll2, pitch2, yaw2); q.rotation_matrix(m); m.to_euler(&roll2, &pitch2, &yaw2); check_result("test_quaternion4", roll, pitch, yaw, roll2, pitch2, yaw2); } void test_quaternion_eulers(void) { uint8_t N = ARRAY_SIZE(angles); hal.console->printf("quaternion unit tests\n\n"); test_quaternion(M_PI/4, 0, 0); test_quaternion(0, M_PI/4, 0); test_quaternion(0, 0, M_PI/4); test_quaternion(-M_PI/4, 0, 0); test_quaternion(0, -M_PI/4, 0); test_quaternion(0, 0, -M_PI/4); test_quaternion(-M_PI/4, 1, 1); test_quaternion(1, -M_PI/4, 1); test_quaternion(1, 1, -M_PI/4); test_quaternion(ToRad(89), 0, 0.1f); test_quaternion(0, ToRad(89), 0.1f); test_quaternion(0.1f, 0, ToRad(89)); test_quaternion(ToRad(91), 0, 0.1f); test_quaternion(0, ToRad(91), 0.1f); test_quaternion(0.1f, 0, ToRad(91)); for (uint8_t i = 0; i < N; i++) for (uint8_t j = 0; j < N; j++) for (uint8_t k = 0; k < N; k++) test_quaternion(angles[i], angles[j], angles[k]); hal.console->printf("tests done\n\n"); } static void test_conversion(float roll, float pitch, float yaw) { Quaternion q; Matrix3f m, m2; float roll2, pitch2, yaw2; float roll3, pitch3, yaw3; q.from_euler(roll, pitch, yaw); q.to_euler(roll2, pitch2, yaw2); check_result("test_conversion1", roll, pitch, yaw, roll2, pitch2, yaw2); q.rotation_matrix(m); m.to_euler(&roll2, &pitch2, &yaw2); m2.from_euler(roll, pitch, yaw); m2.to_euler(&roll3, &pitch3, &yaw3); if (m.is_nan()) { hal.console->printf("NAN matrix roll=%f pitch=%f yaw=%f\n", (double)roll, (double)pitch, (double)yaw); } check_result("test_conversion2", roll, pitch, yaw, roll2, pitch2, yaw2); check_result("test_conversion3", roll, pitch, yaw, roll3, pitch3, yaw3); } void test_conversions(void) { uint8_t N = ARRAY_SIZE(angles); hal.console->printf("matrix/quaternion tests\n\n"); test_conversion(1, 1.1f, 1.2f); test_conversion(1, -1.1f, 1.2f); test_conversion(1, -1.1f, -1.2f); test_conversion(-1, 1.1f, -1.2f); test_conversion(-1, 1.1f, 1.2f); for (uint8_t i = 0; i < N; i++) for (uint8_t j = 0; j < N; j++) for (uint8_t k = 0; k < N; k++) test_conversion(angles[i], angles[j], angles[k]); hal.console->printf("tests done\n\n"); } void test_frame_transforms(void) { Vector3f v, v2; Quaternion q; Matrix3f m; hal.console->printf("frame transform tests\n\n"); q.from_euler(ToRad(45), ToRad(45), ToRad(45)); q.normalize(); m.from_euler(ToRad(45), ToRad(45), ToRad(45)); v2 = v = Vector3f(0.0f, 0.0f, 1.0f); q.earth_to_body(v2); hal.console->printf("%f %f %f\n", (double)v2.x, (double)v2.y, (double)v2.z); v2 = m * v; hal.console->printf("%f %f %f\n\n", (double)v2.x, (double)v2.y, (double)v2.z); v2 = v = Vector3f(0.0f, 1.0f, 0.0f); q.earth_to_body(v2); hal.console->printf("%f %f %f\n", (double)v2.x, (double)v2.y, (double)v2.z); v2 = m * v; hal.console->printf("%f %f %f\n\n", (double)v2.x, (double)v2.y, (double)v2.z); v2 = v = Vector3f(1.0f, 0.0f, 0.0f); q.earth_to_body(v2); hal.console->printf("%f %f %f\n", (double)v2.x, (double)v2.y, (double)v2.z); v2 = m * v; hal.console->printf("%f %f %f\n", (double)v2.x, (double)v2.y, (double)v2.z); } // generate a random float between -1 and 1 static float rand_num(void) { return ((2.0f * get_random16()) / 0xFFFF) - 1.0f; } void test_matrix_rotate(void) { Matrix3f m1, m2, diff; Vector3f r; m1.identity(); m2.identity(); r.x = rand_num(); r.y = rand_num(); r.z = rand_num(); for (uint16_t i = 0; i < 1000; i++) { // old method Matrix3f temp_matrix; temp_matrix.a.x = 0; temp_matrix.a.y = -r.z; temp_matrix.a.z = r.y; temp_matrix.b.x = r.z; temp_matrix.b.y = 0; temp_matrix.b.z = -r.x; temp_matrix.c.x = -r.y; temp_matrix.c.y = r.x; temp_matrix.c.z = 0; temp_matrix = m1 * temp_matrix; m1 += temp_matrix; // new method m2.rotate(r); // check they behave in the same way diff = m1 - m2; float err = diff.a.length() + diff.b.length() + diff.c.length(); if (err > 0) { hal.console->printf("ERROR: i=%u err=%f\n", (unsigned)i, (double)err); } } } /* * euler angle tests */ void setup(void) { hal.console->printf("euler unit tests\n\n"); test_conversion(0, M_PI, 0); test_frame_transforms(); test_conversions(); test_quaternion_eulers(); test_matrix_eulers(); test_matrix_rotate(); } void loop(void) {} AP_HAL_MAIN();