#include <errno.h> #include <fcntl.h> #include <poll.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/time.h> #include <unistd.h> #include <AP_HAL/AP_HAL.h> #include <AP_HAL/utility/dsm.h> #include <AP_HAL/utility/sumd.h> #include <AP_HAL/utility/st24.h> #include <AP_HAL/utility/srxl.h> #include "RCInput.h" #include "sbus.h" #define MIN_NUM_CHANNELS 5 extern const AP_HAL::HAL& hal; using namespace Linux; RCInput::RCInput() { ppm_state._channel_counter = -1; } void RCInput::init() { } bool RCInput::new_input() { bool ret = rc_input_count != last_rc_input_count; if (ret) { last_rc_input_count.store(rc_input_count); } return ret; } uint8_t RCInput::num_channels() { return _num_channels; } void RCInput::set_num_channels(uint8_t num) { _num_channels = num; } uint16_t RCInput::read(uint8_t ch) { if (ch >= _num_channels) { return 0; } return _pwm_values[ch]; } uint8_t RCInput::read(uint16_t* periods, uint8_t len) { uint8_t i; for (i=0; i<len; i++) { periods[i] = read(i); } return len; } /* process a PPM-sum pulse of the given width */ void RCInput::_process_ppmsum_pulse(uint16_t width_usec) { if (width_usec >= 2700) { // a long pulse indicates the end of a frame. Reset the // channel counter so next pulse is channel 0 if (ppm_state._channel_counter >= MIN_NUM_CHANNELS) { for (uint8_t i=0; i<ppm_state._channel_counter; i++) { _pwm_values[i] = ppm_state._pulse_capt[i]; } _num_channels = ppm_state._channel_counter; rc_input_count++; } ppm_state._channel_counter = 0; return; } if (ppm_state._channel_counter == -1) { // we are not synchronised return; } /* we limit inputs to between 700usec and 2300usec. This allows us to decode SBUS on the same pin, as SBUS will have a maximum pulse width of 100usec */ if (width_usec > 700 && width_usec < 2300) { // take a reading for the current channel // buffer these ppm_state._pulse_capt[ppm_state._channel_counter] = width_usec; // move to next channel ppm_state._channel_counter++; } // if we have reached the maximum supported channels then // mark as unsynchronised, so we wait for a wide pulse if (ppm_state._channel_counter >= LINUX_RC_INPUT_NUM_CHANNELS) { for (uint8_t i=0; i<ppm_state._channel_counter; i++) { _pwm_values[i] = ppm_state._pulse_capt[i]; } _num_channels = ppm_state._channel_counter; rc_input_count++; ppm_state._channel_counter = -1; } } /* process a SBUS input pulse of the given width */ void RCInput::_process_sbus_pulse(uint16_t width_s0, uint16_t width_s1) { // convert to bit widths, allowing for up to 1usec error, assuming 100000 bps uint16_t bits_s0 = (width_s0+1) / 10; uint16_t bits_s1 = (width_s1+1) / 10; uint16_t nlow; uint8_t byte_ofs = sbus_state.bit_ofs/12; uint8_t bit_ofs = sbus_state.bit_ofs%12; if (bits_s0 == 0 || bits_s1 == 0) { // invalid data goto reset; } if (bits_s0+bit_ofs > 10) { // invalid data as last two bits must be stop bits goto reset; } // pull in the high bits sbus_state.bytes[byte_ofs] |= ((1U<<bits_s0)-1) << bit_ofs; sbus_state.bit_ofs += bits_s0; bit_ofs += bits_s0; // pull in the low bits nlow = bits_s1; if (nlow + bit_ofs > 12) { nlow = 12 - bit_ofs; } bits_s1 -= nlow; sbus_state.bit_ofs += nlow; if (sbus_state.bit_ofs == 25*12 && bits_s1 > 12) { // we have a full frame uint8_t bytes[25]; uint8_t i; for (i=0; i<25; i++) { // get inverted data uint16_t v = ~sbus_state.bytes[i]; // check start bit if ((v & 1) != 0) { goto reset; } // check stop bits if ((v & 0xC00) != 0xC00) { goto reset; } // check parity uint8_t parity = 0, j; for (j=1; j<=8; j++) { parity ^= (v & (1U<<j))?1:0; } if (parity != (v&0x200)>>9) { goto reset; } bytes[i] = ((v>>1) & 0xFF); } uint16_t values[LINUX_RC_INPUT_NUM_CHANNELS]; uint16_t num_values=0; bool sbus_failsafe=false, sbus_frame_drop=false; if (sbus_decode(bytes, values, &num_values, &sbus_failsafe, &sbus_frame_drop, LINUX_RC_INPUT_NUM_CHANNELS) && num_values >= MIN_NUM_CHANNELS) { for (i=0; i<num_values; i++) { _pwm_values[i] = values[i]; } _num_channels = num_values; if (!sbus_failsafe) { rc_input_count++; } } goto reset; } else if (bits_s1 > 12) { // break goto reset; } return; reset: memset(&sbus_state, 0, sizeof(sbus_state)); } void RCInput::_process_dsm_pulse(uint16_t width_s0, uint16_t width_s1) { // convert to bit widths, allowing for up to 1usec error, assuming 115200 bps uint16_t bits_s0 = ((width_s0+4)*(uint32_t)115200) / 1000000; uint16_t bits_s1 = ((width_s1+4)*(uint32_t)115200) / 1000000; uint8_t bit_ofs, byte_ofs; uint16_t nbits; if (bits_s0 == 0 || bits_s1 == 0) { // invalid data goto reset; } byte_ofs = dsm_state.bit_ofs/10; bit_ofs = dsm_state.bit_ofs%10; if(byte_ofs > 15) { // invalid data goto reset; } // pull in the high bits nbits = bits_s0; if (nbits+bit_ofs > 10) { nbits = 10 - bit_ofs; } dsm_state.bytes[byte_ofs] |= ((1U<<nbits)-1) << bit_ofs; dsm_state.bit_ofs += nbits; bit_ofs += nbits; if (bits_s0 - nbits > 10) { if (dsm_state.bit_ofs == 16*10) { // we have a full frame uint8_t bytes[16]; uint8_t i; for (i=0; i<16; i++) { // get raw data uint16_t v = dsm_state.bytes[i]; // check start bit if ((v & 1) != 0) { goto reset; } // check stop bits if ((v & 0x200) != 0x200) { goto reset; } bytes[i] = ((v>>1) & 0xFF); } uint16_t values[8]; uint16_t num_values=0; if (dsm_decode(AP_HAL::micros64(), bytes, values, &num_values, 8) && num_values >= MIN_NUM_CHANNELS) { for (i=0; i<num_values; i++) { _pwm_values[i] = values[i]; } _num_channels = num_values; rc_input_count++; } } memset(&dsm_state, 0, sizeof(dsm_state)); } byte_ofs = dsm_state.bit_ofs/10; bit_ofs = dsm_state.bit_ofs%10; if (bits_s1+bit_ofs > 10) { // invalid data goto reset; } // pull in the low bits dsm_state.bit_ofs += bits_s1; return; reset: memset(&dsm_state, 0, sizeof(dsm_state)); } void RCInput::_process_pwm_pulse(uint16_t channel, uint16_t width_s0, uint16_t width_s1) { if (channel < _num_channels) { _pwm_values[channel] = width_s1; // range: 700usec ~ 2300usec rc_input_count++; } } /* process a RC input pulse of the given width */ void RCInput::_process_rc_pulse(uint16_t width_s0, uint16_t width_s1) { #if 0 // useful for debugging static FILE *rclog; if (rclog == nullptr) { rclog = fopen("/tmp/rcin.log", "w"); } if (rclog) { fprintf(rclog, "%u %u\n", (unsigned)width_s0, (unsigned)width_s1); } #endif // treat as PPM-sum _process_ppmsum_pulse(width_s0 + width_s1); // treat as SBUS _process_sbus_pulse(width_s0, width_s1); // treat as DSM _process_dsm_pulse(width_s0, width_s1); } /* * Update channel values directly */ void RCInput::_update_periods(uint16_t *periods, uint8_t len) { if (len > LINUX_RC_INPUT_NUM_CHANNELS) { len = LINUX_RC_INPUT_NUM_CHANNELS; } for (unsigned int i=0; i < len; i++) { _pwm_values[i] = periods[i]; } _num_channels = len; rc_input_count++; } /* add some bytes of input in DSM serial stream format, coping with partial packets */ bool RCInput::add_dsm_input(const uint8_t *bytes, size_t nbytes) { if (nbytes == 0) { return false; } const uint8_t dsm_frame_size = sizeof(dsm.frame); bool ret = false; uint32_t now = AP_HAL::millis(); if (now - dsm.last_input_ms > 5) { // resync based on time dsm.partial_frame_count = 0; } dsm.last_input_ms = now; while (nbytes > 0) { size_t n = nbytes; if (dsm.partial_frame_count + n > dsm_frame_size) { n = dsm_frame_size - dsm.partial_frame_count; } if (n > 0) { memcpy(&dsm.frame[dsm.partial_frame_count], bytes, n); dsm.partial_frame_count += n; nbytes -= n; bytes += n; } if (dsm.partial_frame_count == dsm_frame_size) { dsm.partial_frame_count = 0; uint16_t values[16] {}; uint16_t num_values=0; /* we only accept input when nbytes==0 as dsm is highly sensitive to framing, and extra bytes may be an indication this is really SRXL */ if (dsm_decode(AP_HAL::micros64(), dsm.frame, values, &num_values, 16) && num_values >= MIN_NUM_CHANNELS && nbytes == 0) { for (uint8_t i=0; i<num_values; i++) { if (values[i] != 0) { _pwm_values[i] = values[i]; } } /* the apparent number of channels can change on DSM, as they are spread across multiple frames. We just use the max num_values we get */ if (num_values > _num_channels) { _num_channels = num_values; } rc_input_count++; #if 0 printf("Decoded DSM %u channels %u %u %u %u %u %u %u %u\n", (unsigned)num_values, values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7]); #endif ret = true; } } } return ret; } /* add some bytes of input in SUMD serial stream format, coping with partial packets */ bool RCInput::add_sumd_input(const uint8_t *bytes, size_t nbytes) { uint16_t values[LINUX_RC_INPUT_NUM_CHANNELS]; uint8_t rssi; uint8_t rx_count; uint16_t channel_count; bool ret = false; while (nbytes > 0) { if (sumd_decode(*bytes++, &rssi, &rx_count, &channel_count, values, LINUX_RC_INPUT_NUM_CHANNELS) == 0) { if (channel_count > LINUX_RC_INPUT_NUM_CHANNELS) { continue; } for (uint8_t i=0; i<channel_count; i++) { if (values[i] != 0) { _pwm_values[i] = values[i]; } } _num_channels = channel_count; rc_input_count++; ret = true; _rssi = rssi; } nbytes--; } return ret; } /* add some bytes of input in ST24 serial stream format, coping with partial packets */ bool RCInput::add_st24_input(const uint8_t *bytes, size_t nbytes) { uint16_t values[LINUX_RC_INPUT_NUM_CHANNELS]; uint8_t rssi; uint8_t rx_count; uint16_t channel_count; bool ret = false; while (nbytes > 0) { if (st24_decode(*bytes++, &rssi, &rx_count, &channel_count, values, LINUX_RC_INPUT_NUM_CHANNELS) == 0) { if (channel_count > LINUX_RC_INPUT_NUM_CHANNELS) { continue; } for (uint8_t i=0; i<channel_count; i++) { if (values[i] != 0) { _pwm_values[i] = values[i]; } } _num_channels = channel_count; rc_input_count++; ret = true; _rssi = rssi; } nbytes--; } return ret; } /* add some bytes of input in SRXL serial stream format, coping with partial packets */ bool RCInput::add_srxl_input(const uint8_t *bytes, size_t nbytes) { uint16_t values[LINUX_RC_INPUT_NUM_CHANNELS]; uint8_t channel_count; uint64_t now = AP_HAL::micros64(); bool ret = false; bool failsafe_state; while (nbytes > 0) { if (srxl_decode(now, *bytes++, &channel_count, values, LINUX_RC_INPUT_NUM_CHANNELS, &failsafe_state) == 0) { if (channel_count > LINUX_RC_INPUT_NUM_CHANNELS) { continue; } for (uint8_t i=0; i<channel_count; i++) { _pwm_values[i] = values[i]; } _num_channels = channel_count; if (failsafe_state == false) { rc_input_count++; } ret = true; } nbytes--; } return ret; } /* add some bytes of input in SBUS serial stream format, coping with partial packets */ void RCInput::add_sbus_input(const uint8_t *bytes, size_t nbytes) { if (nbytes == 0) { return; } const uint8_t sbus_frame_size = sizeof(sbus.frame); uint32_t now = AP_HAL::millis(); if (now - sbus.last_input_ms > 5) { // resync based on time sbus.partial_frame_count = 0; } sbus.last_input_ms = now; while (nbytes > 0) { size_t n = nbytes; if (sbus.partial_frame_count + n > sbus_frame_size) { n = sbus_frame_size - sbus.partial_frame_count; } if (n > 0) { memcpy(&sbus.frame[sbus.partial_frame_count], bytes, n); sbus.partial_frame_count += n; nbytes -= n; bytes += n; } if (sbus.partial_frame_count == sbus_frame_size) { sbus.partial_frame_count = 0; uint16_t values[16] {}; uint16_t num_values=0; bool sbus_failsafe; bool sbus_frame_drop; if (sbus_decode(sbus.frame, values, &num_values, &sbus_failsafe, &sbus_frame_drop, 16) && num_values >= MIN_NUM_CHANNELS) { for (uint8_t i=0; i<num_values; i++) { if (values[i] != 0) { _pwm_values[i] = values[i]; } } /* the apparent number of channels can change on SBUS, as they are spread across multiple frames. We just use the max num_values we get */ if (num_values > _num_channels) { _num_channels = num_values; } if (!sbus_failsafe) { rc_input_count++; } #if 0 printf("Decoded SBUS %u channels %u %u %u %u %u %u %u %u %s\n", (unsigned)num_values, values[0], values[1], values[2], values[3], values[4], values[5], values[6], values[7], sbus_failsafe?"FAIL":"OK"); #endif } } } }