/* * polygon.cpp * Copyright (C) Andrew Tridgell 2011 * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_Math.h" #pragma GCC optimize("O2") /* * The point in polygon algorithm is based on: * https://wrf.ecse.rpi.edu//Research/Short_Notes/pnpoly.html */ /* * Polygon_outside(): test for a point in a polygon * Input: P = a point, * V[] = vertex points of a polygon V[n+1] with V[n]=V[0] * Return: true if P is outside the polygon * * This does not take account of the curvature of the earth, but we * expect that to be very small over the distances involved in the * fence boundary */ template <typename T> bool Polygon_outside(const Vector2<T> &P, const Vector2<T> *V, unsigned n) { const bool complete = Polygon_complete(V, n); if (complete) { // the last point is the same as the first point; treat as if // the last point wasn't passed in n--; } unsigned i, j; // step through each edge pair-wise looking for crossings: bool outside = true; for (i=0; i<n; i++) { j = i+1; if (j >= n) { j = 0; } if ((V[i].y > P.y) == (V[j].y > P.y)) { continue; } const T dx1 = P.x - V[i].x; const T dx2 = V[j].x - V[i].x; const T dy1 = P.y - V[i].y; const T dy2 = V[j].y - V[i].y; const int8_t dx1s = (dx1 < 0) ? -1 : 1; const int8_t dx2s = (dx2 < 0) ? -1 : 1; const int8_t dy1s = (dy1 < 0) ? -1 : 1; const int8_t dy2s = (dy2 < 0) ? -1 : 1; const int8_t m1 = dx1s * dy2s; const int8_t m2 = dx2s * dy1s; // we avoid the 64 bit multiplies if we can based on sign checks. if (dy2 < 0) { if (m1 > m2) { outside = !outside; } else if (m1 < m2) { continue; } else { if (std::is_floating_point<T>::value) { if ( dx1 * dy2 > dx2 * dy1 ) { outside = !outside; } } else { if ( dx1 * (int64_t)dy2 > dx2 * (int64_t)dy1 ) { outside = !outside; } } } } else { if (m1 < m2) { outside = !outside; } else if (m1 > m2) { continue; } else { if (std::is_floating_point<T>::value) { if ( dx1 * dy2 < dx2 * dy1 ) { outside = !outside; } } else { if ( dx1 * (int64_t)dy2 < dx2 * (int64_t)dy1 ) { outside = !outside; } } } } } return outside; } /* * check if a polygon is complete. * * We consider a polygon to be complete if we have at least 4 points, * and the first point is the same as the last point. That is the * minimum requirement for the Polygon_outside function to work */ template <typename T> bool Polygon_complete(const Vector2<T> *V, unsigned n) { return (n >= 4 && V[n-1] == V[0]); } // Necessary to avoid linker errors template bool Polygon_outside<int32_t>(const Vector2l &P, const Vector2l *V, unsigned n); template bool Polygon_complete<int32_t>(const Vector2l *V, unsigned n); template bool Polygon_outside<float>(const Vector2f &P, const Vector2f *V, unsigned n); template bool Polygon_complete<float>(const Vector2f *V, unsigned n); /* determine if the polygon of N verticies defined by points V is intersected by a line from point p1 to point p2 intersection argument returns the intersection closest to p1 */ bool Polygon_intersects(const Vector2f *V, unsigned N, const Vector2f &p1, const Vector2f &p2, Vector2f &intersection) { const bool complete = Polygon_complete(V, N); if (complete) { // if the last point is the same as the first point // treat as if the last point wasn't passed in N--; } float intersect_dist_sq = FLT_MAX; for (uint8_t i=0; i<N; i++) { uint8_t j = i+1; if (j >= N) { j = 0; } const Vector2f &v1 = V[i]; const Vector2f &v2 = V[j]; // optimisations for common cases if (v1.x > p1.x && v2.x > p1.x && v1.x > p2.x && v2.x > p2.x) { continue; } if (v1.y > p1.y && v2.y > p1.y && v1.y > p2.y && v2.y > p2.y) { continue; } if (v1.x < p1.x && v2.x < p1.x && v1.x < p2.x && v2.x < p2.x) { continue; } if (v1.y < p1.y && v2.y < p1.y && v1.y < p2.y && v2.y < p2.y) { continue; } Vector2f intersect_tmp; if (Vector2f::segment_intersection(v1,v2,p1,p2,intersect_tmp)) { float dist_sq = sq(intersect_tmp.x - p1.x) + sq(intersect_tmp.y - p1.y); if (dist_sq < intersect_dist_sq) { intersect_dist_sq = dist_sq; intersection = intersect_tmp; } } } return (intersect_dist_sq < FLT_MAX); } /* return the closest distance that a line from p1 to p2 comes to an edge of closed polygon V, defined by N points negative numbers indicate the line cross into the polygon with the negative size being the distance from p2 to the intersection point closest to p1 */ float Polygon_closest_distance_line(const Vector2f *V, unsigned N, const Vector2f &p1, const Vector2f &p2) { Vector2f intersection; if (Polygon_intersects(V,N,p1,p2,intersection)) { return -sqrtf(sq(intersection.x - p2.x) + sq(intersection.y - p2.y)); } float closest_sq = FLT_MAX; for (uint8_t i=0; i<N-1; i++) { const Vector2f &v1 = V[i]; const Vector2f &v2 = V[i+1]; float dist_sq = Vector2f::closest_distance_between_lines_squared(v1, v2, p1, p2); if (dist_sq < closest_sq) { closest_sq = dist_sq; } } return sqrtf(closest_sq); } /* return the closest distance that point p comes to an edge of closed polygon V, defined by N points */ float Polygon_closest_distance_point(const Vector2f *V, unsigned N, const Vector2f &p) { float closest_sq = FLT_MAX; for (uint8_t i=0; i<N-1; i++) { const Vector2f &v1 = V[i]; const Vector2f &v2 = V[i+1]; float dist_sq = Vector2f::closest_distance_between_line_and_point_squared(v1, v2, p); if (dist_sq < closest_sq) { closest_sq = dist_sq; } } return sqrtf(closest_sq); }