#include "Copter.h" /* compass/motor interference calibration */ // setup_compassmot - sets compass's motor interference parameters MAV_RESULT Copter::mavlink_compassmot(mavlink_channel_t chan) { #if FRAME_CONFIG == HELI_FRAME // compassmot not implemented for tradheli return MAV_RESULT_TEMPORARILY_REJECTED; #else int8_t comp_type; // throttle or current based compensation Vector3f compass_base[COMPASS_MAX_INSTANCES]; // compass vector when throttle is zero Vector3f motor_impact[COMPASS_MAX_INSTANCES]; // impact of motors on compass vector Vector3f motor_impact_scaled[COMPASS_MAX_INSTANCES]; // impact of motors on compass vector scaled with throttle Vector3f motor_compensation[COMPASS_MAX_INSTANCES]; // final compensation to be stored to eeprom float throttle_pct; // throttle as a percentage 0.0 ~ 1.0 float throttle_pct_max = 0.0f; // maximum throttle reached (as a percentage 0~1.0) float current_amps_max = 0.0f; // maximum current reached float interference_pct[COMPASS_MAX_INSTANCES]; // interference as a percentage of total mag field (for reporting purposes only) uint32_t last_run_time; uint32_t last_send_time; bool updated = false; // have we updated the compensation vector at least once uint8_t command_ack_start = command_ack_counter; // exit immediately if we are already in compassmot if (ap.compass_mot) { // ignore restart messages return MAV_RESULT_TEMPORARILY_REJECTED; }else{ ap.compass_mot = true; } // initialise output for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) { interference_pct[i] = 0.0f; } // check compass is enabled if (!g.compass_enabled) { gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Compass disabled"); ap.compass_mot = false; return MAV_RESULT_TEMPORARILY_REJECTED; } // check compass health compass.read(); for (uint8_t i=0; i<compass.get_count(); i++) { if (!compass.healthy(i)) { gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Check compass"); ap.compass_mot = false; return MAV_RESULT_TEMPORARILY_REJECTED; } } // check if radio is calibrated arming.pre_arm_rc_checks(true); if (!ap.pre_arm_rc_check) { gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "RC not calibrated"); ap.compass_mot = false; return MAV_RESULT_TEMPORARILY_REJECTED; } // check throttle is at zero read_radio(); if (channel_throttle->get_control_in() != 0) { gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Throttle not zero"); ap.compass_mot = false; return MAV_RESULT_TEMPORARILY_REJECTED; } // check we are landed if (!ap.land_complete) { gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_CRITICAL, "Not landed"); ap.compass_mot = false; return MAV_RESULT_TEMPORARILY_REJECTED; } // disable cpu failsafe failsafe_disable(); // initialise compass init_compass(); // default compensation type to use current if possible if (battery.has_current()) { comp_type = AP_COMPASS_MOT_COMP_CURRENT; }else{ comp_type = AP_COMPASS_MOT_COMP_THROTTLE; } // send back initial ACK mavlink_msg_command_ack_send(chan, MAV_CMD_PREFLIGHT_CALIBRATION,0); // flash leds AP_Notify::flags.esc_calibration = true; // warn user we are starting calibration gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Starting calibration"); // inform what type of compensation we are attempting if (comp_type == AP_COMPASS_MOT_COMP_CURRENT) { gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Current"); } else{ gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Throttle"); } // disable throttle and battery failsafe g.failsafe_throttle = FS_THR_DISABLED; g.failsafe_battery_enabled = FS_BATT_DISABLED; // disable motor compensation compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED); for (uint8_t i=0; i<compass.get_count(); i++) { compass.set_motor_compensation(i, Vector3f(0,0,0)); } // get initial compass readings last_run_time = millis(); while ( millis() - last_run_time < 500 ) { compass.accumulate(); } compass.read(); // store initial x,y,z compass values // initialise interference percentage for (uint8_t i=0; i<compass.get_count(); i++) { compass_base[i] = compass.get_field(i); interference_pct[i] = 0.0f; } // enable motors and pass through throttle init_rc_out(); enable_motor_output(); motors->armed(true); // initialise run time last_run_time = millis(); last_send_time = millis(); // main run while there is no user input and the compass is healthy while (command_ack_start == command_ack_counter && compass.healthy(compass.get_primary()) && motors->armed()) { // 50hz loop if (millis() - last_run_time < 20) { // grab some compass values compass.accumulate(); hal.scheduler->delay(5); continue; } last_run_time = millis(); // read radio input read_radio(); // pass through throttle to motors hal.rcout->cork(); motors->set_throttle_passthrough_for_esc_calibration(channel_throttle->get_control_in() / 1000.0f); hal.rcout->push(); // read some compass values compass.read(); // read current read_battery(); // calculate scaling for throttle throttle_pct = (float)channel_throttle->get_control_in() / 1000.0f; throttle_pct = constrain_float(throttle_pct,0.0f,1.0f); // if throttle is near zero, update base x,y,z values if (throttle_pct <= 0.0f) { for (uint8_t i=0; i<compass.get_count(); i++) { compass_base[i] = compass_base[i] * 0.99f + compass.get_field(i) * 0.01f; } // causing printing to happen as soon as throttle is lifted } else { // calculate diff from compass base and scale with throttle for (uint8_t i=0; i<compass.get_count(); i++) { motor_impact[i] = compass.get_field(i) - compass_base[i]; } // throttle based compensation if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) { // for each compass for (uint8_t i=0; i<compass.get_count(); i++) { // scale by throttle motor_impact_scaled[i] = motor_impact[i] / throttle_pct; // adjust the motor compensation to negate the impact motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f; } updated = true; } else { // for each compass for (uint8_t i=0; i<compass.get_count(); i++) { // current based compensation if more than 3amps being drawn motor_impact_scaled[i] = motor_impact[i] / battery.current_amps(); // adjust the motor compensation to negate the impact if drawing over 3amps if (battery.current_amps() >= 3.0f) { motor_compensation[i] = motor_compensation[i] * 0.99f - motor_impact_scaled[i] * 0.01f; updated = true; } } } // calculate interference percentage at full throttle as % of total mag field if (comp_type == AP_COMPASS_MOT_COMP_THROTTLE) { for (uint8_t i=0; i<compass.get_count(); i++) { // interference is impact@fullthrottle / mag field * 100 interference_pct[i] = motor_compensation[i].length() / (float)arming.compass_magfield_expected() * 100.0f; } }else{ for (uint8_t i=0; i<compass.get_count(); i++) { // interference is impact/amp * (max current seen / max throttle seen) / mag field * 100 interference_pct[i] = motor_compensation[i].length() * (current_amps_max/throttle_pct_max) / (float)arming.compass_magfield_expected() * 100.0f; } } // record maximum throttle and current throttle_pct_max = MAX(throttle_pct_max, throttle_pct); current_amps_max = MAX(current_amps_max, battery.current_amps()); } if (AP_HAL::millis() - last_send_time > 500) { last_send_time = AP_HAL::millis(); mavlink_msg_compassmot_status_send(chan, channel_throttle->get_control_in(), battery.current_amps(), interference_pct[compass.get_primary()], motor_compensation[compass.get_primary()].x, motor_compensation[compass.get_primary()].y, motor_compensation[compass.get_primary()].z); } } // stop motors motors->output_min(); motors->armed(false); // set and save motor compensation if (updated) { compass.motor_compensation_type(comp_type); for (uint8_t i=0; i<compass.get_count(); i++) { compass.set_motor_compensation(i, motor_compensation[i]); } compass.save_motor_compensation(); // display success message gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_INFO, "Calibration successful"); } else { // compensation vector never updated, report failure gcs_chan[chan-MAVLINK_COMM_0].send_text(MAV_SEVERITY_NOTICE, "Failed"); compass.motor_compensation_type(AP_COMPASS_MOT_COMP_DISABLED); } // display new motor offsets and save report_compass(); // turn off notify leds AP_Notify::flags.esc_calibration = false; // re-enable cpu failsafe failsafe_enable(); // re-enable failsafes g.failsafe_throttle.load(); g.failsafe_battery_enabled.load(); // flag we have completed ap.compass_mot = false; return MAV_RESULT_ACCEPTED; #endif // FRAME_CONFIG != HELI_FRAME }