/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_Baro_MS5611.h" #include <utility> #include <stdio.h> #include <AP_Math/AP_Math.h> #include <AP_Math/crc.h> extern const AP_HAL::HAL &hal; static const uint8_t CMD_MS56XX_RESET = 0x1E; static const uint8_t CMD_MS56XX_READ_ADC = 0x00; /* PROM start address */ static const uint8_t CMD_MS56XX_PROM = 0xA0; /* write to one of these addresses to start pressure conversion */ #define ADDR_CMD_CONVERT_D1_OSR256 0x40 #define ADDR_CMD_CONVERT_D1_OSR512 0x42 #define ADDR_CMD_CONVERT_D1_OSR1024 0x44 #define ADDR_CMD_CONVERT_D1_OSR2048 0x46 #define ADDR_CMD_CONVERT_D1_OSR4096 0x48 /* write to one of these addresses to start temperature conversion */ #define ADDR_CMD_CONVERT_D2_OSR256 0x50 #define ADDR_CMD_CONVERT_D2_OSR512 0x52 #define ADDR_CMD_CONVERT_D2_OSR1024 0x54 #define ADDR_CMD_CONVERT_D2_OSR2048 0x56 #define ADDR_CMD_CONVERT_D2_OSR4096 0x58 /* use an OSR of 1024 to reduce the self-heating effect of the sensor. Information from MS tells us that some individual sensors are quite sensitive to this effect and that reducing the OSR can make a big difference */ static const uint8_t ADDR_CMD_CONVERT_PRESSURE = ADDR_CMD_CONVERT_D1_OSR1024; static const uint8_t ADDR_CMD_CONVERT_TEMPERATURE = ADDR_CMD_CONVERT_D2_OSR1024; /* constructor */ AP_Baro_MS56XX::AP_Baro_MS56XX(AP_Baro &baro, AP_HAL::OwnPtr<AP_HAL::Device> dev, enum MS56XX_TYPE ms56xx_type) : AP_Baro_Backend(baro) , _dev(std::move(dev)) , _ms56xx_type(ms56xx_type) { } AP_Baro_Backend *AP_Baro_MS56XX::probe(AP_Baro &baro, AP_HAL::OwnPtr<AP_HAL::Device> dev, enum MS56XX_TYPE ms56xx_type) { if (!dev) { return nullptr; } AP_Baro_MS56XX *sensor = new AP_Baro_MS56XX(baro, std::move(dev), ms56xx_type); if (!sensor || !sensor->_init()) { delete sensor; return nullptr; } return sensor; } bool AP_Baro_MS56XX::_init() { if (!_dev) { return false; } _dev->get_semaphore()->take_blocking(); // high retries for init _dev->set_retries(10); uint16_t prom[8]; bool prom_read_ok = false; _dev->transfer(&CMD_MS56XX_RESET, 1, nullptr, 0); hal.scheduler->delay(4); const char *name = "MS5611"; switch (_ms56xx_type) { case BARO_MS5607: name = "MS5607"; FALLTHROUGH; case BARO_MS5611: prom_read_ok = _read_prom_5611(prom); break; case BARO_MS5837: name = "MS5837"; prom_read_ok = _read_prom_5637(prom); break; case BARO_MS5637: name = "MS5637"; prom_read_ok = _read_prom_5637(prom); break; } if (!prom_read_ok) { _dev->get_semaphore()->give(); return false; } printf("%s found on bus %u address 0x%02x\n", name, _dev->bus_num(), _dev->get_bus_address()); // Save factory calibration coefficients _cal_reg.c1 = prom[1]; _cal_reg.c2 = prom[2]; _cal_reg.c3 = prom[3]; _cal_reg.c4 = prom[4]; _cal_reg.c5 = prom[5]; _cal_reg.c6 = prom[6]; // Send a command to read temperature first _dev->transfer(&ADDR_CMD_CONVERT_TEMPERATURE, 1, nullptr, 0); _state = 0; memset(&_accum, 0, sizeof(_accum)); _instance = _frontend.register_sensor(); _dev->set_device_type(DEVTYPE_BARO_MS5611); set_bus_id(_instance, _dev->get_bus_id()); if (_ms56xx_type == BARO_MS5837) { _frontend.set_type(_instance, AP_Baro::BARO_TYPE_WATER); } // lower retries for run _dev->set_retries(3); _dev->get_semaphore()->give(); /* Request 100Hz update */ _dev->register_periodic_callback(10 * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_MS56XX::_timer, void)); return true; } uint16_t AP_Baro_MS56XX::_read_prom_word(uint8_t word) { const uint8_t reg = CMD_MS56XX_PROM + (word << 1); uint8_t val[2]; if (!_dev->transfer(®, 1, val, sizeof(val))) { return 0; } return (val[0] << 8) | val[1]; } uint32_t AP_Baro_MS56XX::_read_adc() { uint8_t val[3]; if (!_dev->transfer(&CMD_MS56XX_READ_ADC, 1, val, sizeof(val))) { return 0; } return (val[0] << 16) | (val[1] << 8) | val[2]; } bool AP_Baro_MS56XX::_read_prom_5611(uint16_t prom[8]) { /* * MS5611-01BA datasheet, CYCLIC REDUNDANCY CHECK (CRC): "MS5611-01BA * contains a PROM memory with 128-Bit. A 4-bit CRC has been implemented * to check the data validity in memory." * * CRC field must me removed for CRC-4 calculation. */ bool all_zero = true; for (uint8_t i = 0; i < 8; i++) { prom[i] = _read_prom_word(i); if (prom[i] != 0) { all_zero = false; } } if (all_zero) { return false; } /* save the read crc */ const uint16_t crc_read = prom[7] & 0xf; /* remove CRC byte */ prom[7] &= 0xff00; return crc_read == crc_crc4(prom); } bool AP_Baro_MS56XX::_read_prom_5637(uint16_t prom[8]) { /* * MS5637-02BA03 datasheet, CYCLIC REDUNDANCY CHECK (CRC): "MS5637 * contains a PROM memory with 112-Bit. A 4-bit CRC has been implemented * to check the data validity in memory." * * 8th PROM word must be zeroed and CRC field removed for CRC-4 * calculation. */ bool all_zero = true; for (uint8_t i = 0; i < 7; i++) { prom[i] = _read_prom_word(i); if (prom[i] != 0) { all_zero = false; } } if (all_zero) { return false; } prom[7] = 0; /* save the read crc */ const uint16_t crc_read = (prom[0] & 0xf000) >> 12; /* remove CRC byte */ prom[0] &= ~0xf000; return crc_read == crc_crc4(prom); } /* * Read the sensor with a state machine * We read one time temperature (state=0) and then 4 times pressure (states 1-4) * * Temperature is used to calculate the compensated pressure and doesn't vary * as fast as pressure. Hence we reuse the same temperature for 4 samples of * pressure. */ void AP_Baro_MS56XX::_timer(void) { uint8_t next_cmd; uint8_t next_state; uint32_t adc_val = _read_adc(); /* * If read fails, re-initiate a read command for current state or we are * stuck */ if (adc_val == 0) { next_state = _state; } else { next_state = (_state + 1) % 5; } next_cmd = next_state == 0 ? ADDR_CMD_CONVERT_TEMPERATURE : ADDR_CMD_CONVERT_PRESSURE; if (!_dev->transfer(&next_cmd, 1, nullptr, 0)) { return; } /* if we had a failed read we are all done */ if (adc_val == 0 || adc_val == 0xFFFFFF) { // a failed read can mean the next returned value will be // corrupt, we must discard it. This copes with MISO being // pulled either high or low _discard_next = true; return; } if (_discard_next) { _discard_next = false; _state = next_state; return; } WITH_SEMAPHORE(_sem); if (_state == 0) { _update_and_wrap_accumulator(&_accum.s_D2, adc_val, &_accum.d2_count, 32); } else if (pressure_ok(adc_val)) { _update_and_wrap_accumulator(&_accum.s_D1, adc_val, &_accum.d1_count, 128); } _state = next_state; } void AP_Baro_MS56XX::_update_and_wrap_accumulator(uint32_t *accum, uint32_t val, uint8_t *count, uint8_t max_count) { *accum += val; *count += 1; if (*count == max_count) { *count = max_count / 2; *accum = *accum / 2; } } void AP_Baro_MS56XX::update() { uint32_t sD1, sD2; uint8_t d1count, d2count; { WITH_SEMAPHORE(_sem); if (_accum.d1_count == 0) { return; } sD1 = _accum.s_D1; sD2 = _accum.s_D2; d1count = _accum.d1_count; d2count = _accum.d2_count; memset(&_accum, 0, sizeof(_accum)); } if (d1count != 0) { _D1 = ((float)sD1) / d1count; } if (d2count != 0) { _D2 = ((float)sD2) / d2count; } switch (_ms56xx_type) { case BARO_MS5607: _calculate_5607(); break; case BARO_MS5611: _calculate_5611(); break; case BARO_MS5637: _calculate_5637(); break; case BARO_MS5837: _calculate_5837(); } } // Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100). void AP_Baro_MS56XX::_calculate_5611() { float dT; float TEMP; float OFF; float SENS; // we do the calculations using floating point allows us to take advantage // of the averaging of D1 and D1 over multiple samples, giving us more // precision dT = _D2-(((uint32_t)_cal_reg.c5)<<8); TEMP = (dT * _cal_reg.c6)/8388608; OFF = _cal_reg.c2 * 65536.0f + (_cal_reg.c4 * dT) / 128; SENS = _cal_reg.c1 * 32768.0f + (_cal_reg.c3 * dT) / 256; TEMP += 2000; if (TEMP < 2000) { // second order temperature compensation when under 20 degrees C float T2 = (dT*dT) / 0x80000000; float Aux = sq(TEMP-2000.0); float OFF2 = 2.5f*Aux; float SENS2 = 1.25f*Aux; if (TEMP < -1500) { // extra compensation for temperatures below -15C OFF2 += 7 * sq(TEMP+1500); SENS2 += sq(TEMP+1500) * 11.0*0.5; } TEMP = TEMP - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; } float pressure = (_D1*SENS/2097152 - OFF)/32768; float temperature = TEMP * 0.01f; _copy_to_frontend(_instance, pressure, temperature); } // Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100). void AP_Baro_MS56XX::_calculate_5607() { float dT; float TEMP; float OFF; float SENS; // we do the calculations using floating point allows us to take advantage // of the averaging of D1 and D1 over multiple samples, giving us more // precision dT = _D2-(((uint32_t)_cal_reg.c5)<<8); TEMP = (dT * _cal_reg.c6)/8388608; OFF = _cal_reg.c2 * 131072.0f + (_cal_reg.c4 * dT) / 64; SENS = _cal_reg.c1 * 65536.0f + (_cal_reg.c3 * dT) / 128; TEMP += 2000; if (TEMP < 2000) { // second order temperature compensation when under 20 degrees C float T2 = (dT*dT) / 0x80000000; float Aux = sq(TEMP-2000); float OFF2 = 61.0f*Aux/16.0f; float SENS2 = 2.0f*Aux; if (TEMP < -1500) { OFF2 += 15 * sq(TEMP+1500); SENS2 += 8 * sq(TEMP+1500); } TEMP = TEMP - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; } float pressure = (_D1*SENS/2097152 - OFF)/32768; float temperature = TEMP * 0.01f; _copy_to_frontend(_instance, pressure, temperature); } // Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100). void AP_Baro_MS56XX::_calculate_5637() { int32_t dT, TEMP; int64_t OFF, SENS; int32_t raw_pressure = _D1; int32_t raw_temperature = _D2; dT = raw_temperature - (((uint32_t)_cal_reg.c5) << 8); TEMP = 2000 + ((int64_t)dT * (int64_t)_cal_reg.c6) / 8388608; OFF = (int64_t)_cal_reg.c2 * (int64_t)131072 + ((int64_t)_cal_reg.c4 * (int64_t)dT) / (int64_t)64; SENS = (int64_t)_cal_reg.c1 * (int64_t)65536 + ((int64_t)_cal_reg.c3 * (int64_t)dT) / (int64_t)128; if (TEMP < 2000) { // second order temperature compensation when under 20 degrees C int32_t T2 = ((int64_t)3 * ((int64_t)dT * (int64_t)dT) / (int64_t)8589934592); int64_t aux = (TEMP - 2000) * (TEMP - 2000); int64_t OFF2 = 61 * aux / 16; int64_t SENS2 = 29 * aux / 16; if (TEMP < -1500) { OFF2 += 17 * sq(TEMP+1500); SENS2 += 9 * sq(TEMP+1500); } TEMP = TEMP - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; } int32_t pressure = ((int64_t)raw_pressure * SENS / (int64_t)2097152 - OFF) / (int64_t)32768; float temperature = TEMP * 0.01f; _copy_to_frontend(_instance, (float)pressure, temperature); } // Calculate Temperature and compensated Pressure in real units (Celsius degrees*100, mbar*100). void AP_Baro_MS56XX::_calculate_5837() { int32_t dT, TEMP; int64_t OFF, SENS; int32_t raw_pressure = _D1; int32_t raw_temperature = _D2; // note that MS5837 has no compensation for temperatures below -15C in the datasheet dT = raw_temperature - (((uint32_t)_cal_reg.c5) << 8); TEMP = 2000 + ((int64_t)dT * (int64_t)_cal_reg.c6) / 8388608; OFF = (int64_t)_cal_reg.c2 * (int64_t)65536 + ((int64_t)_cal_reg.c4 * (int64_t)dT) / (int64_t)128; SENS = (int64_t)_cal_reg.c1 * (int64_t)32768 + ((int64_t)_cal_reg.c3 * (int64_t)dT) / (int64_t)256; if (TEMP < 2000) { // second order temperature compensation when under 20 degrees C int32_t T2 = ((int64_t)3 * ((int64_t)dT * (int64_t)dT) / (int64_t)8589934592); int64_t aux = (TEMP - 2000) * (TEMP - 2000); int64_t OFF2 = 3 * aux / 2; int64_t SENS2 = 5 * aux / 8; TEMP = TEMP - T2; OFF = OFF - OFF2; SENS = SENS - SENS2; } int32_t pressure = ((int64_t)raw_pressure * SENS / (int64_t)2097152 - OFF) / (int64_t)8192; pressure = pressure * 10; // MS5837 only reports to 0.1 mbar float temperature = TEMP * 0.01f; _copy_to_frontend(_instance, (float)pressure, temperature); }