// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /***************************************** * Throttle slew limit *****************************************/ static void throttle_slew_limit(int16_t last_throttle) { // if slew limit rate is set to zero then do not slew limit if (g.throttle_slewrate) { // limit throttle change by the given percentage per second float temp = g.throttle_slewrate * G_Dt * 0.01f * fabsf(g.channel_throttle.radio_max - g.channel_throttle.radio_min); // allow a minimum change of 1 PWM per cycle if (temp < 1) { temp = 1; } g.channel_throttle.radio_out = constrain_int16(g.channel_throttle.radio_out, last_throttle - temp, last_throttle + temp); } } static void calc_throttle() { int throttle_target = g.throttle_cruise + throttle_nudge; groundspeed_error = g.speed_cruise - ground_speed; throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100) / 100); g.channel_throttle.servo_out = constrain_int16(throttle, g.throttle_min.get(), g.throttle_max.get()); } /***************************************** * Calculate desired turn angles (in medium freq loop) *****************************************/ static void calc_nav_steer() { // Adjust gain based on ground speed nav_gain_scaler = (float)ground_speed / g.speed_cruise; nav_gain_scaler = constrain(nav_gain_scaler, 0.2, 1.4); // Calculate the required turn of the wheels rover // ---------------------------------------- // negative error = left turn // positive error = right turn nav_steer = g.pidNavSteer.get_pid(bearing_error_cd, nav_gain_scaler); if (obstacle) { // obstacle avoidance nav_steer += 9000; // if obstacle in front turn 90° right } } /***************************************** * Set the flight control servos based on the current calculated values *****************************************/ static void set_servos(void) { int16_t last_throttle = g.channel_throttle.radio_out; if ((control_mode == MANUAL) || (control_mode == LEARNING)) { // do a direct pass through of radio values g.channel_steer.radio_out = g.channel_steer.radio_in; if (obstacle) // obstacle in front, turn right in Stabilize mode g.channel_steer.radio_out -= 500; g.channel_throttle.radio_out = g.channel_throttle.radio_in; } else { g.channel_steer.calc_pwm(); g.channel_throttle.radio_out = g.channel_throttle.radio_in; g.channel_throttle.servo_out = constrain_int16(g.channel_throttle.servo_out, g.throttle_min.get(), g.throttle_max.get()); } if (control_mode >= AUTO) { // convert 0 to 100% into PWM g.channel_throttle.calc_pwm(); // limit throttle movement speed throttle_slew_limit(last_throttle); } #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS // send values to the PWM timers for output // ---------------------------------------- hal.rcout->write(CH_1, g.channel_steer.radio_out); // send to Servos hal.rcout->write(CH_3, g.channel_throttle.radio_out); // send to Servos // Route configurable aux. functions to their respective servos g.rc_2.output_ch(CH_2); g.rc_4.output_ch(CH_4); g.rc_5.output_ch(CH_5); g.rc_6.output_ch(CH_6); g.rc_7.output_ch(CH_7); g.rc_8.output_ch(CH_8); #endif } static bool demoing_servos; static void demo_servos(uint8_t i) { while(i > 0) { gcs_send_text_P(SEVERITY_LOW,PSTR("Demo Servos!")); demoing_servos = true; #if HIL_MODE == HIL_MODE_DISABLED || HIL_SERVOS hal.rcout->write(1, 1400); mavlink_delay(400); hal.rcout->write(1, 1600); mavlink_delay(200); hal.rcout->write(1, 1500); #endif demoing_servos = false; mavlink_delay(400); i--; } }