#include #include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include "AP_Baro_SITL.h" extern const AP_HAL::HAL& hal; /* constructor - registers instance at top Baro driver */ AP_Baro_SITL::AP_Baro_SITL(AP_Baro &baro) : _has_sample(false), AP_Baro_Backend(baro) { _sitl = (SITL::SITL *)AP_Param::find_object("SIM_"); if (_sitl != nullptr) { _instance = _frontend.register_sensor(); #if APM_BUILD_TYPE(APM_BUILD_ArduSub) _frontend.set_type(_instance, AP_Baro::BARO_TYPE_WATER); #endif hal.scheduler->register_timer_process(FUNCTOR_BIND(this, &AP_Baro_SITL::_timer, void)); } } // adjust for board temperature void AP_Baro_SITL::temperature_adjustment(float &p, float &T) { const float tsec = AP_HAL::millis() * 0.001f; const float T0 = _sitl->temp_start; const float T1 = _sitl->temp_flight; const float tconst = _sitl->temp_tconst; const float baro_factor = _sitl->temp_baro_factor; const float Tzero = 30.0f; // start baro adjustment at 30C T = T1 - (T1 - T0) * expf(-tsec / tconst); if (is_positive(baro_factor)) { // this produces a pressure change with temperature that // closely matches what has been observed with a ICM-20789 // barometer. A typical factor is 1.2. p -= powf(MAX(T - Tzero, 0), baro_factor); } } void AP_Baro_SITL::_timer() { // 100Hz const uint32_t now = AP_HAL::millis(); if ((now - _last_sample_time) < 10) { return; } _last_sample_time = now; float sim_alt = _sitl->state.altitude; if (_sitl->baro_disable) { // barometer is disabled return; } sim_alt += _sitl->baro_drift * now / 1000.0f; sim_alt += _sitl->baro_noise * rand_float(); // add baro glitch sim_alt += _sitl->baro_glitch; // add delay uint32_t best_time_delta = 200; // initialise large time representing buffer entry closest to current time - delay. uint8_t best_index = 0; // initialise number representing the index of the entry in buffer closest to delay. // storing data from sensor to buffer if (now - _last_store_time >= 10) { // store data every 10 ms. _last_store_time = now; if (_store_index > _buffer_length - 1) { // reset buffer index if index greater than size of buffer _store_index = 0; } _buffer[_store_index].data = sim_alt; // add data to current index _buffer[_store_index].time = _last_store_time; // add time_stamp to current index _store_index = _store_index + 1; // increment index } // return delayed measurement const uint32_t delayed_time = now - _sitl->baro_delay; // get time corresponding to delay // find data corresponding to delayed time in buffer for (uint8_t i = 0; i <= _buffer_length - 1; i++) { // find difference between delayed time and time stamp in buffer uint32_t time_delta = abs( (int32_t)(delayed_time - _buffer[i].time)); // if this difference is smaller than last delta, store this time if (time_delta < best_time_delta) { best_index = i; best_time_delta = time_delta; } } if (best_time_delta < 200) { // only output stored state if < 200 msec retrieval error sim_alt = _buffer[best_index].data; } #if !APM_BUILD_TYPE(APM_BUILD_ArduSub) float sigma, delta, theta; AP_Baro::SimpleAtmosphere(sim_alt * 0.001f, sigma, delta, theta); float p = SSL_AIR_PRESSURE * delta; float T = 303.16f * theta - C_TO_KELVIN; // Assume 30 degrees at sea level - converted to degrees Kelvin temperature_adjustment(p, T); #else float rho, delta, theta; AP_Baro::SimpleUnderWaterAtmosphere(-sim_alt * 0.001f, rho, delta, theta); float p = SSL_AIR_PRESSURE * delta; float T = 303.16f * theta - C_TO_KELVIN; // Assume 30 degrees at sea level - converted to degrees Kelvin #endif _recent_press = p; _recent_temp = T; _has_sample = true; } // Read the sensor void AP_Baro_SITL::update(void) { if (_sem->take_nonblocking()) { if (!_has_sample) { _sem->give(); return; } _copy_to_frontend(_instance, _recent_press, _recent_temp); _has_sample = false; _sem->give(); } } #endif // CONFIG_HAL_BOARD