/* www.ArduCopter.com - www.DIYDrones.com Copyright (c) 2010. All rights reserved. An Open Source Arduino based multicopter. File : Events.pde Version : v1.0, Aug 27, 2010 Author(s): ArduCopter Team Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz, Jani Hirvinen, Ken McEwans, Roberto Navoni, Sandro Benigno, Chris Anderson This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . * ************************************************************** * ChangeLog: 31-10-10 Moved camera stabilization from Functions to here, jp * ************************************************************** * TODO: * ************************************************************** */ /* **************************************************** */ // Camera stabilization // // Stabilization for three different camera styles // 1) Camera mounts that have tilt / pan // 2) Camera mounts that have tilt / roll // 3) Camera mounts that have tilt / roll / pan (future) // // Original code idea from Max Levine / DIY Drones // You need to initialize proper camera mode by sending Serial command and then save it // to EEPROM memory. Possible commands are K1, K2, K3, K4 // Look more about different camera type on ArduCopter Wiki #ifdef IsCAM void camera_output() { // cam_mode = 1; // for debugging // Camera stabilization jump tables // SW_DIP1 is a multplier, settings switch ((SW_DIP1 * 4) + cam_mode + (BATTLOW * 10)) { // Cases 1 & 4 are stabilization for + Mode flying setup // Cases 5 & 8 are stabilization for x Mode flying setup // Modes 3/4 + 7/8 needs still proper scaling on yaw movement // Scaling needs physical test flying with FPV cameras on, 30-10-10 jp case 1: // Camera stabilization with Roll / Tilt mounts, NO transmitter input APM_RC.OutputCh(CAM_TILT_OUT, limitRange((CAM_CENT + (pitch) * CAM_SMOOTHING), 1000, 2000)); // Tilt correction APM_RC.OutputCh(CAM_ROLL_OUT, limitRange((CAM_CENT + (roll) * CAM_SMOOTHING_ROLL), 1000, 2000)); // Roll correction break; case 2: // Camera stabilization with Roll / Tilt mounts, transmitter controls basic "zerolevel" APM_RC.OutputCh(CAM_TILT_OUT, limitRange((APM_RC.InputCh(CAM_TILT_CH) + (pitch) * CAM_SMOOTHING), 1000, 2000)); // Tilt correction APM_RC.OutputCh(CAM_ROLL_OUT, limitRange((CAM_CENT + (roll) * CAM_SMOOTHING_ROLL), 1000, 2000)); // Roll correction break; case 3: // Camera stabilization with Yaw / Tilt mounts, NO transmitter input APM_RC.OutputCh(CAM_TILT_OUT, limitRange((CAM_CENT - (roll - pitch) * CAM_SMOOTHING), 1000, 2000)); // Tilt correction APM_RC.OutputCh(CAM_YAW_OUT, limitRange((CAM_CENT - (gyro_offset_yaw - AN[2])), 1000, 2000)); // Roll correction break; case 4: // Camera stabilization with Yaw / Tilt mounts, transmitter controls basic "zerolevel" APM_RC.OutputCh(CAM_TILT_OUT, limitRange((APM_RC.InputCh(CAM_TILT_CH) + (pitch) * CAM_SMOOTHING), 1000, 2000)); // Tilt correction APM_RC.OutputCh(CAM_YAW_OUT, limitRange((CAM_CENT - (gyro_offset_yaw - AN[2])), 1000, 2000)); // Roll correction break; // x Mode flying setup case 5: // Camera stabilization with Roll / Tilt mounts, NO transmitter input APM_RC.OutputCh(CAM_TILT_OUT, limitRange((CAM_CENT - (roll - pitch) * CAM_SMOOTHING), 1000, 2000)); // Tilt correction APM_RC.OutputCh(CAM_ROLL_OUT, limitRange((CAM_CENT + (roll + pitch) * CAM_SMOOTHING), 1000, 2000)); // Roll correction break; case 6: // Camera stabilization with Roll / Tilt mounts, transmitter controls basic "zerolevel" APM_RC.OutputCh(CAM_TILT_OUT, limitRange((APM_RC.InputCh(CAM_TILT_CH) + (roll - pitch) * CAM_SMOOTHING), 1000, 2000)); // Tilt correction APM_RC.OutputCh(CAM_ROLL_OUT, limitRange((CAM_CENT + (roll + pitch) * CAM_SMOOTHING), 1000, 2000)); // Roll correction break; case 7: // Camera stabilization with Yaw / Tilt mounts, NO transmitter input APM_RC.OutputCh(CAM_TILT_OUT, limitRange((CAM_CENT - (roll - pitch) * CAM_SMOOTHING), 1000, 2000)); // Tilt correction APM_RC.OutputCh(CAM_YAW_OUT, limitRange((CAM_CENT - (gyro_offset_yaw - AN[2])), 1000, 2000)); // Roll correction break; case 8: // Camera stabilization with Yaw / Tilt mounts, transmitter controls basic "zerolevel" APM_RC.OutputCh(CAM_TILT_OUT, limitRange((APM_RC.InputCh(CAM_TILT_CH) - (roll - pitch) * CAM_SMOOTHING),1000,2000)); // Tilt correction APM_RC.OutputCh(CAM_YAW_OUT, limitRange((CAM_CENT - (gyro_offset_yaw - AN[2])),1000,2000)); // Yaw correction break; // Only in case of we have switch values over 10 default: // We should not be here... break; } } #endif