/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
// Copyright 2010 Michael Smith, all rights reserved.
// Derived closely from:
/****************************************
* 3D Vector Classes
* By Bill Perone (billperone@yahoo.com)
* Original: 9-16-2002
* Revised: 19-11-2003
* 11-12-2003
* 18-12-2003
* 06-06-2004
*
* Copyright 2003, This code is provided "as is" and you can use it freely as long as
* credit is given to Bill Perone in the application it is used in
*
* Notes:
* if a*b = 0 then a & b are orthogonal
* a%b = -b%a
* a*(b%c) = (a%b)*c
* a%b = a(cast to matrix)*b
* (a%b).length() = area of parallelogram formed by a & b
* (a%b).length() = a.length()*b.length() * sin(angle between a & b)
* (a%b).length() = 0 if angle between a & b = 0 or a.length() = 0 or b.length() = 0
* a * (b%c) = volume of parallelpiped formed by a, b, c
* vector triple product: a%(b%c) = b*(a*c) - c*(a*b)
* scalar triple product: a*(b%c) = c*(a%b) = b*(c%a)
* vector quadruple product: (a%b)*(c%d) = (a*c)*(b*d) - (a*d)*(b*c)
* if a is unit vector along b then a%b = -b%a = -b(cast to matrix)*a = 0
* vectors a1...an are linearly dependent if there exists a vector of scalars (b) where a1*b1 + ... + an*bn = 0
* or if the matrix (A) * b = 0
*
****************************************/
#pragma once
#ifndef MATH_CHECK_INDEXES
#define MATH_CHECK_INDEXES 0
#endif
#include
#include
#include
#if MATH_CHECK_INDEXES
#include
#endif
#include "rotations.h"
#include "ftype.h"
template
class Matrix3;
template
class Vector2;
template
class Vector3
{
public:
T x, y, z;
// trivial ctor
constexpr Vector3()
: x(0)
, y(0)
, z(0) {}
// setting ctor
constexpr Vector3(const T x0, const T y0, const T z0)
: x(x0)
, y(y0)
, z(z0) {}
//Create a Vector3 from a Vector2 with z
constexpr Vector3(const Vector2 &v0, const T z0)
: x(v0.x)
, y(v0.y)
, z(z0) {}
// test for equality
bool operator ==(const Vector3 &v) const;
// test for inequality
bool operator !=(const Vector3 &v) const;
// negation
Vector3 operator -(void) const;
// addition
Vector3 operator +(const Vector3 &v) const;
// subtraction
Vector3 operator -(const Vector3 &v) const;
// uniform scaling
Vector3 operator *(const T num) const;
// uniform scaling
Vector3 operator /(const T num) const;
// addition
Vector3 &operator +=(const Vector3 &v);
// subtraction
Vector3 &operator -=(const Vector3 &v);
// uniform scaling
Vector3 &operator *=(const T num);
// uniform scaling
Vector3 &operator /=(const T num);
// non-uniform scaling
Vector3 &operator *=(const Vector3 &v) {
x *= v.x; y *= v.y; z *= v.z;
return *this;
}
// allow a vector3 to be used as an array, 0 indexed
T & operator[](uint8_t i) {
T *_v = &x;
#if MATH_CHECK_INDEXES
assert(i >= 0 && i < 3);
#endif
return _v[i];
}
const T & operator[](uint8_t i) const {
const T *_v = &x;
#if MATH_CHECK_INDEXES
assert(i >= 0 && i < 3);
#endif
return _v[i];
}
// dot product
T operator *(const Vector3 &v) const;
// dot product for Lua
T dot(const Vector3 &v) const {
return *this * v;
}
// multiply a row vector by a matrix, to give a row vector
Vector3 operator *(const Matrix3 &m) const;
// multiply a column vector by a row vector, returning a 3x3 matrix
Matrix3 mul_rowcol(const Vector3 &v) const;
// cross product
Vector3 operator %(const Vector3 &v) const;
// cross product for Lua
Vector3 cross(const Vector3 &v) const {
return *this % v;
}
// scale a vector3
Vector3 scale(const T v) const {
return *this * v;
}
// computes the angle between this vector and another vector
T angle(const Vector3 &v2) const;
// check if any elements are NAN
bool is_nan(void) const WARN_IF_UNUSED;
// check if any elements are infinity
bool is_inf(void) const WARN_IF_UNUSED;
// check if all elements are zero
bool is_zero(void) const WARN_IF_UNUSED {
return (fabsf(x) < FLT_EPSILON) &&
(fabsf(y) < FLT_EPSILON) &&
(fabsf(z) < FLT_EPSILON);
}
// rotate by a standard rotation
void rotate(enum Rotation rotation);
void rotate_inverse(enum Rotation rotation);
// rotate vector by angle in radians in xy plane leaving z untouched
void rotate_xy(T rotation_rad);
// return xy components of a vector3 as a vector2.
// this returns a reference to the original vector3 xy data
const Vector2 &xy() const {
return *(const Vector2 *)this;
}
Vector2 &xy() {
return *(Vector2 *)this;
}
// gets the length of this vector squared
T length_squared() const
{
return (T)(*this * *this);
}
// gets the length of this vector
T length(void) const;
// limit xy component vector to a given length. returns true if vector was limited
bool limit_length_xy(T max_length);
// normalizes this vector
void normalize()
{
*this /= length();
}
// zero the vector
void zero()
{
x = y = z = 0;
}
// returns the normalized version of this vector
Vector3 normalized() const
{
return *this/length();
}
// reflects this vector about n
void reflect(const Vector3 &n)
{
Vector3 orig(*this);
project(n);
*this = *this*2 - orig;
}
// projects this vector onto v
void project(const Vector3 &v)
{
*this= v * (*this * v)/(v*v);
}
// returns this vector projected onto v
Vector3 projected(const Vector3 &v) const
{
return v * (*this * v)/(v*v);
}
// distance from the tip of this vector to another vector squared (so as to avoid the sqrt calculation)
T distance_squared(const Vector3 &v) const {
const T dist_x = x-v.x;
const T dist_y = y-v.y;
const T dist_z = z-v.z;
return (dist_x*dist_x + dist_y*dist_y + dist_z*dist_z);
}
// distance from the tip of this vector to a line segment specified by two vectors
T distance_to_segment(const Vector3 &seg_start, const Vector3 &seg_end) const;
// extrapolate position given bearing and pitch (in degrees) and distance
void offset_bearing(T bearing, T pitch, T distance);
/*
conversion to/from double
*/
Vector3 tofloat() const {
return Vector3{float(x),float(y),float(z)};
}
Vector3 todouble() const {
return Vector3{x,y,z};
}
// given a position p1 and a velocity v1 produce a vector
// perpendicular to v1 maximising distance from p1. If p1 is the
// zero vector the return from the function will always be the
// zero vector - that should be checked for.
static Vector3 perpendicular(const Vector3 &p1, const Vector3 &v1)
{
const T d = p1 * v1;
if (fabsf(d) < FLT_EPSILON) {
return p1;
}
const Vector3 parallel = (v1 * d) / v1.length_squared();
Vector3 perpendicular = p1 - parallel;
return perpendicular;
}
// Shortest distance between point(p) to a point contained in the line segment defined by w1,w2
static T closest_distance_between_line_and_point(const Vector3 &w1, const Vector3 &w2, const Vector3 &p);
// Point in the line segment defined by w1,w2 which is closest to point(p)
static Vector3 point_on_line_closest_to_other_point(const Vector3 &w1, const Vector3 &w2, const Vector3 &p);
// This implementation is borrowed from: http://geomalgorithms.com/a07-_distance.html
// INPUT: 4 points corresponding to start and end of two line segments
// OUTPUT: closest point on segment 2, from segment 1, gets passed on reference as "closest_point"
static void segment_to_segment_closest_point(const Vector3& seg1_start, const Vector3& seg1_end, const Vector3& seg2_start, const Vector3& seg2_end, Vector3& closest_point);
// Returns true if the passed 3D segment passes through a plane defined by plane normal, and a point on the plane
static bool segment_plane_intersect(const Vector3& seg_start, const Vector3& seg_end, const Vector3& plane_normal, const Vector3& plane_point);
};
// The creation of temporary vector objects as return types creates a significant overhead in certain hot
// code paths. This allows callers to select the inline versions where profiling shows a significant benefit
#if defined(AP_INLINE_VECTOR_OPS) && !defined(HAL_DEBUG_BUILD)
// vector cross product
template
inline Vector3 Vector3::operator %(const Vector3 &v) const
{
return Vector3(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x);
}
// dot product
template
inline T Vector3::operator *(const Vector3 &v) const
{
return x*v.x + y*v.y + z*v.z;
}
template
inline Vector3 &Vector3::operator *=(const T num)
{
x*=num; y*=num; z*=num;
return *this;
}
template
inline Vector3 &Vector3::operator /=(const T num)
{
x /= num; y /= num; z /= num;
return *this;
}
template
inline Vector3 &Vector3::operator -=(const Vector3 &v)
{
x -= v.x; y -= v.y; z -= v.z;
return *this;
}
template
inline Vector3 &Vector3::operator +=(const Vector3 &v)
{
x+=v.x; y+=v.y; z+=v.z;
return *this;
}
template
inline Vector3 Vector3::operator /(const T num) const
{
return Vector3(x/num, y/num, z/num);
}
template
inline Vector3 Vector3::operator *(const T num) const
{
return Vector3(x*num, y*num, z*num);
}
template
inline Vector3 Vector3::operator -(const Vector3 &v) const
{
return Vector3(x-v.x, y-v.y, z-v.z);
}
template
inline Vector3 Vector3::operator +(const Vector3 &v) const
{
return Vector3(x+v.x, y+v.y, z+v.z);
}
template
inline Vector3 Vector3::operator -(void) const
{
return Vector3(-x,-y,-z);
}
#endif
typedef Vector3 Vector3i;
typedef Vector3 Vector3ui;
typedef Vector3 Vector3l;
typedef Vector3 Vector3ul;
typedef Vector3 Vector3f;
typedef Vector3 Vector3d;