/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include #include #include #include "AP_InertialSensor_BMI055.h" /* device registers, names follow datasheet conventions, with REGA_ prefix for accel, and REGG_ prefix for gyro */ #define REGA_BGW_CHIPID 0x00 #define REGA_ACCD_X_LSB 0x02 #define REGA_ACCD_TEMP 0x08 #define REGA_INT_STATUS_0 0x09 #define REGA_INT_STATUS_1 0x0A #define REGA_INT_STATUS_2 0x0B #define REGA_INT_STATUS_3 0x0C #define REGA_FIFO_STATUS 0x0E #define REGA_PMU_RANGE 0x0F #define REGA_PMU_BW 0x10 #define REGA_PMU_LPW 0x11 #define REGA_ACCD_HBW 0x13 #define REGA_BGW_SOFTRESET 0x14 #define REGA_OUT_CTRL 0x20 #define REGA_EST_LATCH 0x21 #define REGA_FIFO_CONFIG_0 0x30 #define REGA_PMU_SELF_TEST 0x32 #define REGA_FIFO_CONFIG_1 0x3E #define REGA_FIFO_DATA 0x3F #define REGG_CHIPID 0x00 #define REGA_RATE_X_LSB 0x02 #define REGG_INT_STATUS_0 0x09 #define REGG_INT_STATUS_1 0x0A #define REGG_INT_STATUS_2 0x0B #define REGG_INT_STATUS_3 0x0C #define REGG_FIFO_STATUS 0x0E #define REGG_RANGE 0x0F #define REGG_BW 0x10 #define REGG_LPM1 0x11 #define REGG_RATE_HBW 0x13 #define REGG_BGW_SOFTRESET 0x14 #define REGG_FIFO_CONFIG_1 0x3E #define REGG_FIFO_DATA 0x3F #define ACCEL_BACKEND_SAMPLE_RATE 2000 #define GYRO_BACKEND_SAMPLE_RATE 2000 extern const AP_HAL::HAL& hal; #define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1])) AP_InertialSensor_BMI055::AP_InertialSensor_BMI055(AP_InertialSensor &imu, AP_HAL::OwnPtr _dev_accel, AP_HAL::OwnPtr _dev_gyro, enum Rotation _rotation) : AP_InertialSensor_Backend(imu) , dev_accel(std::move(_dev_accel)) , dev_gyro(std::move(_dev_gyro)) , rotation(_rotation) { } AP_InertialSensor_Backend * AP_InertialSensor_BMI055::probe(AP_InertialSensor &imu, AP_HAL::OwnPtr dev_accel, AP_HAL::OwnPtr dev_gyro, enum Rotation rotation) { if (!dev_accel || !dev_gyro) { return nullptr; } auto sensor = new AP_InertialSensor_BMI055(imu, std::move(dev_accel), std::move(dev_gyro), rotation); if (!sensor) { return nullptr; } if (!sensor->init()) { delete sensor; return nullptr; } return sensor; } void AP_InertialSensor_BMI055::start() { accel_instance = _imu.register_accel(ACCEL_BACKEND_SAMPLE_RATE, dev_accel->get_bus_id_devtype(DEVTYPE_INS_BMI055)); gyro_instance = _imu.register_gyro(GYRO_BACKEND_SAMPLE_RATE, dev_gyro->get_bus_id_devtype(DEVTYPE_INS_BMI055)); // setup sensor rotations from probe() set_gyro_orientation(gyro_instance, rotation); set_accel_orientation(accel_instance, rotation); // setup callbacks dev_accel->register_periodic_callback(1000000UL / ACCEL_BACKEND_SAMPLE_RATE, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI055::read_fifo_accel, void)); dev_gyro->register_periodic_callback(1000000UL / GYRO_BACKEND_SAMPLE_RATE, FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI055::read_fifo_gyro, void)); } /* probe and initialise accelerometer */ bool AP_InertialSensor_BMI055::accel_init() { dev_accel->get_semaphore()->take_blocking(); uint8_t v; if (!dev_accel->read_registers(REGA_BGW_CHIPID, &v, 1) || v != 0xFA) { goto failed; } if (!dev_accel->write_register(REGA_BGW_SOFTRESET, 0xB6)) { goto failed; } hal.scheduler->delay(10); dev_accel->setup_checked_registers(5, 20); // setup 16g range if (!dev_accel->write_register(REGA_PMU_RANGE, 0x0C, true)) { goto failed; } // setup filter bandwidth 1kHz if (!dev_accel->write_register(REGA_PMU_BW, 0x0F, true)) { goto failed; } // disable low-power mode if (!dev_accel->write_register(REGA_PMU_LPW, 0, true)) { goto failed; } // setup for unfiltered data if (!dev_accel->write_register(REGA_ACCD_HBW, 0x80, true)) { goto failed; } // setup FIFO for streaming X,Y,Z if (!dev_accel->write_register(REGA_FIFO_CONFIG_1, 0x80, true)) { goto failed; } hal.console->printf("BMI055: found accel\n"); dev_accel->get_semaphore()->give(); return true; failed: dev_accel->get_semaphore()->give(); return false; } /* probe and initialise gyro */ bool AP_InertialSensor_BMI055::gyro_init() { dev_gyro->get_semaphore()->take_blocking(); uint8_t v; if (!dev_gyro->read_registers(REGG_CHIPID, &v, 1) || v != 0x0F) { goto failed; } if (!dev_gyro->write_register(REGG_BGW_SOFTRESET, 0xB6)) { goto failed; } hal.scheduler->delay(10); dev_gyro->setup_checked_registers(5, 20); // setup 2000dps range if (!dev_gyro->write_register(REGG_RANGE, 0x00, true)) { goto failed; } // setup filter bandwidth 230Hz, no decimation if (!dev_gyro->write_register(REGG_BW, 0x81, true)) { goto failed; } // disable low-power mode if (!dev_gyro->write_register(REGG_LPM1, 0, true)) { goto failed; } // setup for filtered data if (!dev_gyro->write_register(REGG_RATE_HBW, 0x00, true)) { goto failed; } // setup FIFO for streaming X,Y,Z if (!dev_gyro->write_register(REGG_FIFO_CONFIG_1, 0x80, true)) { goto failed; } hal.console->printf("BMI055: found gyro\n"); dev_gyro->get_semaphore()->give(); return true; failed: dev_gyro->get_semaphore()->give(); return false; } bool AP_InertialSensor_BMI055::init() { dev_accel->set_read_flag(0x80); dev_gyro->set_read_flag(0x80); return accel_init() && gyro_init(); } /* read accel fifo */ void AP_InertialSensor_BMI055::read_fifo_accel(void) { uint8_t num_frames; if (!dev_accel->read_registers(REGA_FIFO_STATUS, &num_frames, 1)) { _inc_accel_error_count(accel_instance); return; } num_frames &= 0x7F; // don't read more than 8 frames at a time if (num_frames > 8) { num_frames = 8; } if (num_frames == 0) { return; } uint8_t data[6*num_frames]; if (!dev_accel->read_registers(REGA_FIFO_DATA, data, num_frames*6)) { _inc_accel_error_count(accel_instance); return; } // data is 12 bits with 16g range, 7.81mg/LSB const float scale = 7.81 * 0.001 * GRAVITY_MSS / 16.0f; for (uint8_t i = 0; i < num_frames; i++) { const uint8_t *d = &data[i*6]; int16_t xyz[3] { int16_t(uint16_t((d[0]&0xF0) | (d[1]<<8))), int16_t(uint16_t((d[2]&0xF0) | (d[3]<<8))), int16_t(uint16_t((d[4]&0xF0) | (d[5]<<8))) }; Vector3f accel(xyz[0], xyz[1], xyz[2]); accel *= scale; _rotate_and_correct_accel(accel_instance, accel); _notify_new_accel_raw_sample(accel_instance, accel); } if (temperature_counter++ == 100) { temperature_counter = 0; int8_t t; if (!dev_accel->read_registers(REGA_ACCD_TEMP, (uint8_t *)&t, 1)) { _inc_accel_error_count(accel_instance); } else { float temp_degc = (0.5f * t) + 23.0f; _publish_temperature(accel_instance, temp_degc); } } if (!dev_accel->check_next_register()) { _inc_accel_error_count(accel_instance); } } /* read gyro fifo */ void AP_InertialSensor_BMI055::read_fifo_gyro(void) { uint8_t num_frames; if (!dev_gyro->read_registers(REGG_FIFO_STATUS, &num_frames, 1)) { _inc_gyro_error_count(gyro_instance); return; } num_frames &= 0x7F; // don't read more than 8 frames at a time if (num_frames > 8) { num_frames = 8; } if (num_frames == 0) { return; } uint8_t data[6*num_frames]; if (!dev_gyro->read_registers(REGG_FIFO_DATA, data, num_frames*6)) { _inc_gyro_error_count(gyro_instance); return; } // data is 16 bits with 2000dps range const float scale = radians(2000.0f) / 32767.0f; for (uint8_t i = 0; i < num_frames; i++) { const uint8_t *d = &data[i*6]; int16_t xyz[3] { int16_t(uint16_t(d[0] | d[1]<<8)), int16_t(uint16_t(d[2] | d[3]<<8)), int16_t(uint16_t(d[4] | d[5]<<8)) }; Vector3f gyro(xyz[0], xyz[1], xyz[2]); gyro *= scale; _rotate_and_correct_gyro(gyro_instance, gyro); _notify_new_gyro_raw_sample(gyro_instance, gyro); } if (!dev_gyro->check_next_register()) { _inc_gyro_error_count(gyro_instance); } } bool AP_InertialSensor_BMI055::update() { update_accel(accel_instance); update_gyro(gyro_instance); return true; }