#include #if (CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2) #include #include #include "Scheduler.h" using namespace AP_HAL_AVR; #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) static volatile uint32_t timer0_overflow_count = 0; static volatile uint32_t timer0_millis = 0; static uint8_t timer0_fract = 0; void AVRTimer::init() { // this needs to be called before setup() or some functions won't // work there sei(); // set timer 0 prescale factor to 64 // this combination is for the standard 168/328/1280/2560 sbi(TCCR0B, CS01); sbi(TCCR0B, CS00); // enable timer 0 overflow interrupt sbi(TIMSK0, TOIE0); // timers 1 and 2 are used for phase-correct hardware pwm // this is better for motors as it ensures an even waveform // note, however, that fast pwm mode can achieve a frequency of up // 8 MHz (with a 16 MHz clock) at 50% duty cycle TCCR1B = 0; // set timer 1 prescale factor to 64 sbi(TCCR1B, CS11); sbi(TCCR1B, CS10); // put timer 1 in 8-bit phase correct pwm mode sbi(TCCR1A, WGM10); sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64 sbi(TCCR3B, CS30); sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64 sbi(TCCR4B, CS40); sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64 sbi(TCCR5B, CS50); sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode // set a2d prescale factor to 128 // 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range. // XXX: this will not work properly for other clock speeds, and // this code should use F_CPU to determine the prescale factor. sbi(ADCSRA, ADPS2); sbi(ADCSRA, ADPS1); sbi(ADCSRA, ADPS0); // enable a2d conversions sbi(ADCSRA, ADEN); // the bootloader connects pins 0 and 1 to the USART; disconnect them // here so they can be used as normal digital i/o; they will be // reconnected in Serial.begin() UCSR0B = 0; } #define clockCyclesPerMicrosecond() ( F_CPU / 1000000L ) #define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) ) // the prescaler is set so that timer0 ticks every 64 clock cycles, and the // the overflow handler is called every 256 ticks. #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256)) // the whole number of milliseconds per timer0 overflow #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000) // the fractional number of milliseconds per timer0 overflow. we shift right // by three to fit these numbers into a byte. (for the clock speeds we care // about - 8 and 16 MHz - this doesn't lose precision.) #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3) #define FRACT_MAX (1000 >> 3) SIGNAL(TIMER0_OVF_vect) { // copy these to local variables so they can be stored in registers // (volatile variables must be read from memory on every access) uint32_t m = timer0_millis; uint8_t f = timer0_fract; m += MILLIS_INC; f += FRACT_INC; if (f >= FRACT_MAX) { f -= FRACT_MAX; m += 1; } timer0_fract = f; timer0_millis = m; timer0_overflow_count++; } uint32_t AVRTimer::millis() { uint32_t m; uint8_t oldSREG = SREG; // disable interrupts while we read timer0_millis or we might get an // inconsistent value (e.g. in the middle of a write to timer0_millis) cli(); m = timer0_millis; SREG = oldSREG; return m; } uint32_t AVRTimer::micros() { uint32_t m; uint8_t t; uint8_t oldSREG = SREG; cli(); m = timer0_overflow_count; t = TCNT0; if ((TIFR0 & _BV(TOV0)) && (t < 255)) m++; SREG = oldSREG; return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond()); } /* Delay for the given number of microseconds. Assumes a 16 MHz clock. */ void AVRTimer::delay_microseconds(uint16_t us) { // for the 16 MHz clock on most Arduino boards // for a one-microsecond delay, simply return. the overhead // of the function call yields a delay of approximately 1 1/8 us. if (--us == 0) return; // the following loop takes a quarter of a microsecond (4 cycles) // per iteration, so execute it four times for each microsecond of // delay requested. us <<= 2; // account for the time taken in the preceeding commands. us -= 2; // busy wait __asm__ __volatile__ ( "1: sbiw %0,1" "\n\t" // 2 cycles "brne 1b" : "=w" (us) : "0" (us) // 2 cycles ); } #endif