/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <AP_HAL/AP_HAL.h> #if HAL_WITH_UAVCAN #include "AP_Compass_UAVCAN.h" #include <AP_BoardConfig/AP_BoardConfig_CAN.h> #include <AP_UAVCAN/AP_UAVCAN.h> #include <uavcan/equipment/ahrs/MagneticFieldStrength.hpp> #include <uavcan/equipment/ahrs/MagneticFieldStrength2.hpp> extern const AP_HAL::HAL& hal; #define debug_mag_uavcan(level_debug, can_driver, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(can_driver)) { printf(fmt, ##args); }} while (0) // Frontend Registry Binders UC_REGISTRY_BINDER(MagCb, uavcan::equipment::ahrs::MagneticFieldStrength); UC_REGISTRY_BINDER(Mag2Cb, uavcan::equipment::ahrs::MagneticFieldStrength2); AP_Compass_UAVCAN::DetectedModules AP_Compass_UAVCAN::_detected_modules[] = {0}; HAL_Semaphore AP_Compass_UAVCAN::_sem_registry; AP_Compass_UAVCAN::AP_Compass_UAVCAN(AP_UAVCAN* ap_uavcan, uint8_t node_id, uint8_t sensor_id) : _ap_uavcan(ap_uavcan) , _node_id(node_id) , _sensor_id(sensor_id) { } void AP_Compass_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan) { if (ap_uavcan == nullptr) { return; } auto* node = ap_uavcan->get_node(); uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength, MagCb> *mag_listener; mag_listener = new uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength, MagCb>(*node); const int mag_listener_res = mag_listener->start(MagCb(ap_uavcan, &handle_magnetic_field)); if (mag_listener_res < 0) { AP_HAL::panic("UAVCAN Mag subscriber start problem\n\r"); return; } uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength2, Mag2Cb> *mag2_listener; mag2_listener = new uavcan::Subscriber<uavcan::equipment::ahrs::MagneticFieldStrength2, Mag2Cb>(*node); const int mag2_listener_res = mag2_listener->start(Mag2Cb(ap_uavcan, &handle_magnetic_field_2)); if (mag2_listener_res < 0) { AP_HAL::panic("UAVCAN Mag subscriber start problem\n\r"); return; } } AP_Compass_Backend* AP_Compass_UAVCAN::probe() { WITH_SEMAPHORE(_sem_registry); AP_Compass_UAVCAN* driver = nullptr; for (uint8_t i = 0; i < COMPASS_MAX_BACKEND; i++) { if (!_detected_modules[i].driver && _detected_modules[i].ap_uavcan) { // Register new Compass mode to a backend driver = new AP_Compass_UAVCAN(_detected_modules[i].ap_uavcan, _detected_modules[i].node_id, _detected_modules[i].sensor_id); if (driver) { _detected_modules[i].driver = driver; driver->init(); debug_mag_uavcan(2, _detected_modules[i].ap_uavcan->get_driver_index(), "Found Mag Node %d on Bus %d Sensor ID %d\n", _detected_modules[i].node_id, _detected_modules[i].ap_uavcan->get_driver_index(), _detected_modules[i].sensor_id); } break; } } return driver; } void AP_Compass_UAVCAN::init() { _instance = register_compass(); uint32_t devid = AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_UAVCAN, _ap_uavcan->get_driver_index(), _node_id, 1); // the 1 is arbitrary set_dev_id(_instance, devid); set_external(_instance, true); debug_mag_uavcan(2, _ap_uavcan->get_driver_index(), "AP_Compass_UAVCAN loaded\n\r"); } AP_Compass_UAVCAN* AP_Compass_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id, uint8_t sensor_id) { if (ap_uavcan == nullptr) { return nullptr; } for (uint8_t i=0; i<COMPASS_MAX_BACKEND; i++) { if (_detected_modules[i].driver && _detected_modules[i].ap_uavcan == ap_uavcan && _detected_modules[i].node_id == node_id && _detected_modules[i].sensor_id == sensor_id) { return _detected_modules[i].driver; } } bool already_detected = false; // Check if there's an empty spot for possible registeration for (uint8_t i = 0; i < COMPASS_MAX_BACKEND; i++) { if (_detected_modules[i].ap_uavcan == ap_uavcan && _detected_modules[i].node_id == node_id && _detected_modules[i].sensor_id == sensor_id) { // Already Detected already_detected = true; break; } } if (!already_detected) { for (uint8_t i = 0; i < COMPASS_MAX_BACKEND; i++) { if (nullptr == _detected_modules[i].ap_uavcan) { _detected_modules[i].ap_uavcan = ap_uavcan; _detected_modules[i].node_id = node_id; _detected_modules[i].sensor_id = sensor_id; break; } } } return nullptr; } void AP_Compass_UAVCAN::handle_mag_msg(const Vector3f &mag) { Vector3f raw_field = mag * 1000.0; accumulate_sample(raw_field, _instance); } void AP_Compass_UAVCAN::handle_magnetic_field(AP_UAVCAN* ap_uavcan, uint8_t node_id, const MagCb &cb) { WITH_SEMAPHORE(_sem_registry); Vector3f mag_vector; AP_Compass_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, 0); if (driver != nullptr) { mag_vector[0] = cb.msg->magnetic_field_ga[0]; mag_vector[1] = cb.msg->magnetic_field_ga[1]; mag_vector[2] = cb.msg->magnetic_field_ga[2]; driver->handle_mag_msg(mag_vector); } } void AP_Compass_UAVCAN::handle_magnetic_field_2(AP_UAVCAN* ap_uavcan, uint8_t node_id, const Mag2Cb &cb) { WITH_SEMAPHORE(_sem_registry); Vector3f mag_vector; uint8_t sensor_id = cb.msg->sensor_id; AP_Compass_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id, sensor_id); if (driver != nullptr) { mag_vector[0] = cb.msg->magnetic_field_ga[0]; mag_vector[1] = cb.msg->magnetic_field_ga[1]; mag_vector[2] = cb.msg->magnetic_field_ga[2]; driver->handle_mag_msg(mag_vector); } } void AP_Compass_UAVCAN::read(void) { drain_accumulated_samples(_instance); } #endif