/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once /* This is the main Blimp class */ //////////////////////////////////////////////////////////////////////////////// // Header includes //////////////////////////////////////////////////////////////////////////////// #include #include #include #include // Common dependencies #include #include #include #include // Application dependencies #include #include // ArduPilot Mega Flash Memory Library #include // ArduPilot Mega Vector/Matrix math Library // #include // interface and maths for accelerometer calibration // #include // ArduPilot Mega Inertial Sensor (accel & gyro) Library #include #include // statistics library #include // Filter library #include // needed for AHRS build #include // needed for AHRS build #include // ArduPilot Mega inertial navigation library #include // RC input mapping library #include // Battery monitor library #include #include #include #include #include #include // Configuration #include "defines.h" #include "config.h" #include "Fins.h" #include "RC_Channel.h" // RC Channel Library #include "GCS_Mavlink.h" #include "GCS_Blimp.h" #include "AP_Arming.h" #include // Local modules #include "Parameters.h" #if CONFIG_HAL_BOARD == HAL_BOARD_SITL #include #endif #include "mode.h" class Blimp : public AP_Vehicle { public: friend class GCS_MAVLINK_Blimp; friend class GCS_Blimp; friend class Parameters; friend class ParametersG2; friend class AP_Arming_Blimp; friend class RC_Channel_Blimp; friend class RC_Channels_Blimp; friend class Mode; friend class ModeManual; friend class ModeLand; friend class ModeVelocity; friend class ModeLoiter; friend class Fins; Blimp(void); private: // key aircraft parameters passed to multiple libraries AP_Vehicle::MultiCopter aparm; // Global parameters are all contained within the 'g' class. Parameters g; ParametersG2 g2; // primary input control channels RC_Channel *channel_right; RC_Channel *channel_front; RC_Channel *channel_down; RC_Channel *channel_yaw; AP_Logger logger; // flight modes convenience array AP_Int8 *flight_modes; const uint8_t num_flight_modes = 6; #if CONFIG_HAL_BOARD == HAL_BOARD_SITL SITL::SIM sitl; #endif // Arming/Disarming management class AP_Arming_Blimp arming; // system time in milliseconds of last recorded yaw reset from ekf uint32_t ekfYawReset_ms; int8_t ekf_primary_core; // vibration check struct { bool high_vibes; // true while high vibration are detected uint32_t start_ms; // system time high vibration were last detected uint32_t clear_ms; // system time high vibrations stopped } vibration_check; // GCS selection GCS_Blimp _gcs; // avoid using this; use gcs() GCS_Blimp &gcs() { return _gcs; } // Documentation of Globals: typedef union { struct { uint8_t pre_arm_rc_check : 1; // 1 // true if rc input pre-arm checks have been completed successfully uint8_t pre_arm_check : 1; // 2 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed uint8_t auto_armed : 1; // 3 // stops auto missions from beginning until throttle is raised uint8_t logging_started : 1; // 4 // true if logging has started uint8_t land_complete : 1; // 5 // true if we have detected a landing uint8_t new_radio_frame : 1; // 6 // Set true if we have new PWM data to act on from the Radio uint8_t rc_receiver_present : 1; // 7 // true if we have an rc receiver present (i.e. if we've ever received an update uint8_t compass_mot : 1; // 8 // true if we are currently performing compassmot calibration uint8_t motor_test : 1; // 9 // true if we are currently performing the motors test uint8_t initialised : 1; // 10 // true once the init_ardupilot function has completed. Extended status to GCS is not sent until this completes uint8_t land_complete_maybe : 1; // 11 // true if we may have landed (less strict version of land_complete) uint8_t throttle_zero : 1; // 12 // true if the throttle stick is at zero, debounced, determines if pilot intends shut-down uint8_t gps_glitching : 1; // 13 // true if GPS glitching is affecting navigation accuracy uint8_t in_arming_delay : 1; // 14 // true while we are armed but waiting to spin motors uint8_t initialised_params : 1; // 15 // true when the all parameters have been initialised. we cannot send parameters to the GCS until this is done }; uint32_t value; } ap_t; ap_t ap; static_assert(sizeof(uint32_t) == sizeof(ap), "ap_t must be uint32_t"); // This is the state of the flight control system // There are multiple states defined such as STABILIZE, ACRO, Mode::Number control_mode; ModeReason control_mode_reason = ModeReason::UNKNOWN; Mode::Number prev_control_mode; RCMapper rcmap; // intertial nav alt when we armed float arming_altitude_m; // Failsafe struct { int8_t radio_counter; // number of iterations with throttle below throttle_fs_value uint8_t radio : 1; // A status flag for the radio failsafe uint8_t gcs : 1; // A status flag for the ground station failsafe uint8_t ekf : 1; // true if ekf failsafe has occurred } failsafe; bool any_failsafe_triggered() const { return failsafe.radio || battery.has_failsafed() || failsafe.gcs || failsafe.ekf; } // sensor health for logging struct { uint8_t baro : 1; // true if baro is healthy uint8_t compass : 1; // true if compass is healthy } sensor_health; // Motor Output Fins *motors; int32_t _home_bearing; uint32_t _home_distance; // Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable int32_t initial_armed_bearing; // Battery Sensors AP_BattMonitor battery{MASK_LOG_CURRENT, FUNCTOR_BIND_MEMBER(&Blimp::handle_battery_failsafe, void, const char*, const int8_t), _failsafe_priorities}; // Altitude int32_t baro_alt; // barometer altitude in cm above home LowPassFilterVector3f land_accel_ef_filter; // accelerations for land and crash detector tests // filtered pilot's throttle input used to cancel landing if throttle held high LowPassFilterFloat rc_throttle_control_in_filter; // 3D Location vectors // Current location of the vehicle (altitude is relative to home) Location current_loc; Vector3f vel_ned; Vector3f vel_ned_filtd; Vector3f pos_ned; float vel_yaw; float vel_yaw_filtd; NotchFilterVector2f vel_xy_filter; NotchFilterFloat vel_z_filter; NotchFilterFloat vel_yaw_filter; // Inertial Navigation AP_InertialNav_NavEKF inertial_nav; // Vel & pos PIDs AC_PID_2D pid_vel_xy{3, 0.2, 0, 0, 0.2, 3, 3, 0.02}; //These are the defaults - P I D FF IMAX FiltHz FiltDHz DT AC_PID_Basic pid_vel_z{7, 1.5, 0, 0, 1, 3, 3, 0.02}; AC_PID_Basic pid_vel_yaw{3, 0.4, 0, 0, 0.2, 3, 3, 0.02}; AC_PID_2D pid_pos_xy{1, 0.05, 0, 0, 0.1, 3, 3, 0.02}; AC_PID_Basic pid_pos_z{0.7, 0, 0, 0, 0, 3, 3, 0.02}; AC_PID pid_pos_yaw{1.2, 0.5, 0, 0, 2, 3, 3, 3, 0.02}; //p, i, d, ff, imax, filt_t, filt_e, filt_d, dt, opt srmax, opt srtau // System Timers // -------------- // arm_time_ms - Records when vehicle was armed. Will be Zero if we are disarmed. uint32_t arm_time_ms; // Used to exit the roll and pitch auto trim function uint8_t auto_trim_counter; bool auto_trim_started = false; // last valid RC input time uint32_t last_radio_update_ms; // Top-level logic // setup the var_info table AP_Param param_loader; bool standby_active; static const AP_Scheduler::Task scheduler_tasks[]; static const AP_Param::Info var_info[]; static const struct LogStructure log_structure[]; enum Failsafe_Action { Failsafe_Action_None = 0, Failsafe_Action_Land = 1, Failsafe_Action_Terminate = 5 }; enum class FailsafeOption { RC_CONTINUE_IF_AUTO = (1<<0), // 1 GCS_CONTINUE_IF_AUTO = (1<<1), // 2 RC_CONTINUE_IF_GUIDED = (1<<2), // 4 CONTINUE_IF_LANDING = (1<<3), // 8 GCS_CONTINUE_IF_PILOT_CONTROL = (1<<4), // 16 RELEASE_GRIPPER = (1<<5), // 32 }; static constexpr int8_t _failsafe_priorities[] = { Failsafe_Action_Terminate, Failsafe_Action_Land, Failsafe_Action_None, -1 // the priority list must end with a sentinel of -1 }; #define FAILSAFE_LAND_PRIORITY 1 static_assert(_failsafe_priorities[FAILSAFE_LAND_PRIORITY] == Failsafe_Action_Land, "FAILSAFE_LAND_PRIORITY must match the entry in _failsafe_priorities"); static_assert(_failsafe_priorities[ARRAY_SIZE(_failsafe_priorities) - 1] == -1, "_failsafe_priorities is missing the sentinel"); // AP_State.cpp void set_auto_armed(bool b); void set_failsafe_radio(bool b); void set_failsafe_gcs(bool b); // Blimp.cpp void get_scheduler_tasks(const AP_Scheduler::Task *&tasks, uint8_t &task_count, uint32_t &log_bit) override; void fast_loop() override; void rc_loop(); void throttle_loop(); void update_batt_compass(void); void full_rate_logging(); void ten_hz_logging_loop(); void twentyfive_hz_logging(); void three_hz_loop(); void one_hz_loop(); void read_AHRS(void); void update_altitude(); void rotate_NE_to_BF(Vector2f &vec); void rotate_BF_to_NE(Vector2f &vec); // commands.cpp void update_home_from_EKF(); void set_home_to_current_location_inflight(); bool set_home_to_current_location(bool lock) WARN_IF_UNUSED; bool set_home(const Location& loc, bool lock) WARN_IF_UNUSED; bool far_from_EKF_origin(const Location& loc); // ekf_check.cpp void ekf_check(); bool ekf_over_threshold(); void failsafe_ekf_event(); void failsafe_ekf_off_event(void); void check_ekf_reset(); void check_vibration(); // events.cpp bool failsafe_option(FailsafeOption opt) const; void failsafe_radio_on_event(); void failsafe_radio_off_event(); void handle_battery_failsafe(const char* type_str, const int8_t action); void failsafe_gcs_check(); bool should_disarm_on_failsafe(); void do_failsafe_action(Failsafe_Action action, ModeReason reason); void gpsglitch_check(); // failsafe.cpp void failsafe_enable(); void failsafe_disable(); // fence.cpp void fence_check(); // inertia.cpp void read_inertia(); // landing_detector.cpp void update_land_and_crash_detectors(); void update_land_detector(); // landing_gear.cpp void landinggear_update(); // Log.cpp void Log_Write_Performance(); void Log_Write_Attitude(); void Log_Write_PIDs(); void Log_Write_EKF_POS(); void Log_Write_MotBatt(); void Log_Write_Data(LogDataID id, int32_t value); void Log_Write_Data(LogDataID id, uint32_t value); void Log_Write_Data(LogDataID id, int16_t value); void Log_Write_Data(LogDataID id, uint16_t value); void Log_Write_Data(LogDataID id, float value); void Log_Write_Parameter_Tuning(uint8_t param, float tuning_val, float tune_min, float tune_max); void Log_Sensor_Health(); void Log_Write_GuidedTarget(uint8_t target_type, const Vector3f& pos_target, const Vector3f& vel_target); void Log_Write_SysID_Setup(uint8_t systemID_axis, float waveform_magnitude, float frequency_start, float frequency_stop, float time_fade_in, float time_const_freq, float time_record, float time_fade_out); void Log_Write_SysID_Data(float waveform_time, float waveform_sample, float waveform_freq, float angle_x, float angle_y, float angle_z, float accel_x, float accel_y, float accel_z); void Log_Write_Vehicle_Startup_Messages(); void log_init(void); void Write_FINI(float right, float front, float down, float yaw); void Write_FINO(float *amp, float *off); // mode.cpp bool set_mode(Mode::Number mode, ModeReason reason); bool set_mode(const uint8_t new_mode, const ModeReason reason) override; uint8_t get_mode() const override { return (uint8_t)control_mode; } void update_flight_mode(); void notify_flight_mode(); // mode_land.cpp void set_mode_land_with_pause(ModeReason reason); bool landing_with_GPS(); // // motors.cpp void arm_motors_check(); void motors_output(); // Parameters.cpp void load_parameters(void) override; void convert_pid_parameters(void); void convert_lgr_parameters(void); void convert_fs_options_params(void); // radio.cpp void default_dead_zones(); void init_rc_in(); void init_rc_out(); void enable_motor_output(); void read_radio(); void set_throttle_and_failsafe(uint16_t throttle_pwm); void set_throttle_zero_flag(int16_t throttle_control); // sensors.cpp void read_barometer(void); void init_rangefinder(void); void read_rangefinder(void); bool rangefinder_alt_ok(); bool rangefinder_up_ok(); void rpm_update(); void update_optical_flow(void); void init_proximity(); void update_proximity(); // RC_Channel.cpp void save_trim(); void auto_trim(); void auto_trim_cancel(); // system.cpp void init_ardupilot() override; void startup_INS_ground(); bool position_ok() const; bool ekf_has_absolute_position() const; bool ekf_has_relative_position() const; bool ekf_alt_ok() const; void update_auto_armed(); bool should_log(uint32_t mask); MAV_TYPE get_frame_mav_type(); const char* get_frame_string(); void allocate_motors(void); Mode *flightmode; ModeManual mode_manual; ModeLand mode_land; ModeVelocity mode_velocity; ModeLoiter mode_loiter; // mode.cpp Mode *mode_from_mode_num(const Mode::Number mode); void exit_mode(Mode *&old_flightmode, Mode *&new_flightmode); public: void failsafe_check(); // failsafe.cpp }; extern Blimp blimp; using AP_HAL::millis; using AP_HAL::micros;