/* APM_RC_APM1.cpp - Radio Control Library for Ardupilot Mega. Arduino Code by Jordi Muņoz and Jose Julio. DIYDrones.com This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. RC Input : PPM signal on IC4 pin RC Output : 11 Servo outputs (standard 20ms frame) Methods: Init() : Initialization of interrupts an Timers OutpuCh(ch,pwm) : Output value to servos (range : 900-2100us) ch=0..10 InputCh(ch) : Read a channel input value. ch=0..7 GetState() : Returns the state of the input. 1 => New radio frame to process Automatically resets when we call InputCh to read channels */ #include "APM_RC_APM1.h" #include #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #else #include "WProgram.h" #endif #if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__) # error Please check the Tools/Board menu to ensure you have selected Arduino Mega as your target. #else // Variable definition for Input Capture interrupt volatile uint16_t APM_RC_APM1::_PWM_RAW[NUM_CHANNELS] = {2400,2400,2400,2400,2400,2400,2400,2400}; volatile uint8_t APM_RC_APM1::_radio_status=0; /**************************************************** Input Capture Interrupt ICP4 => PPM signal read ****************************************************/ void APM_RC_APM1::_timer4_capt_cb(void) { static uint16_t ICR4_old; static uint8_t PPM_Counter=0; uint16_t Pulse; uint16_t Pulse_Width; Pulse=ICR4; if (Pulse8000) { // SYNC pulse? PPM_Counter=0; } else { if (PPM_Counter < NUM_CHANNELS) { // Valid pulse channel? _PWM_RAW[PPM_Counter++]=Pulse_Width; // Saving pulse. if (PPM_Counter >= NUM_CHANNELS) { _radio_status = 1; } } } ICR4_old = Pulse; } // Constructors //////////////////////////////////////////////////////////////// APM_RC_APM1::APM_RC_APM1() { } // Public Methods ////////////////////////////////////////////////////////////// void APM_RC_APM1::Init( Arduino_Mega_ISR_Registry * isr_reg ) { isr_reg->register_signal(ISR_REGISTRY_TIMER4_CAPT, _timer4_capt_cb ); // Init PWM Timer 1 pinMode(11,OUTPUT); //OUT9 (PB5/OC1A) pinMode(12,OUTPUT); //OUT2 (PB6/OC1B) pinMode(13,OUTPUT); //OUT3 (PB7/OC1C) //Remember the registers not declared here remains zero by default... TCCR1A =((1<>= 1; // Because timer runs at 0.5us we need to do value/2 // Limit values to a valid range result = constrain(result,MIN_PULSEWIDTH,MAX_PULSEWIDTH); _radio_status=0; // Radio channel read return(result); } uint8_t APM_RC_APM1::GetState(void) { return(_radio_status); } // InstantPWM implementation void APM_RC_APM1::Force_Out(void) { Force_Out0_Out1(); Force_Out2_Out3(); Force_Out6_Out7(); } // This function forces the PWM output (reset PWM) on Out0 and Out1 (Timer5). For quadcopters use void APM_RC_APM1::Force_Out0_Out1(void) { if (TCNT5>5000) // We take care that there are not a pulse in the output TCNT5=39990; // This forces the PWM output to reset in 5us (10 counts of 0.5us). The counter resets at 40000 } // This function forces the PWM output (reset PWM) on Out2 and Out3 (Timer1). For quadcopters use void APM_RC_APM1::Force_Out2_Out3(void) { if (TCNT1>5000) TCNT1=39990; } // This function forces the PWM output (reset PWM) on Out6 and Out7 (Timer3). For quadcopters use void APM_RC_APM1::Force_Out6_Out7(void) { if (TCNT3>5000) TCNT3=39990; } /* --------------------- OUTPUT SPEED CONTROL --------------------- */ // Output rate options: #define OUTPUT_SPEED_50HZ 0 #define OUTPUT_SPEED_200HZ 1 #define OUTPUT_SPEED_490HZ 2 void APM_RC_APM1::SetFastOutputChannels(uint32_t chmask) { if ((chmask & ( _BV(CH_1) | _BV(CH_2) | _BV(CH_9))) != 0) _set_speed_ch1_ch2_ch9(OUTPUT_SPEED_490HZ); if ((chmask & ( _BV(CH_3) | _BV(CH_4) | _BV(CH_10))) != 0) _set_speed_ch3_ch4_ch10(OUTPUT_SPEED_490HZ); if ((chmask & ( _BV(CH_5) | _BV(CH_6))) != 0) _set_speed_ch5_ch6(OUTPUT_SPEED_490HZ); if ((chmask & ( _BV(CH_7) | _BV(CH_8) | _BV(CH_11))) != 0) _set_speed_ch7_ch8_ch11(OUTPUT_SPEED_490HZ); } void APM_RC_APM1::_set_speed_ch1_ch2_ch9(uint8_t speed) { switch(speed) { case OUTPUT_SPEED_490HZ: ICR1= 4096; break; case OUTPUT_SPEED_200HZ: ICR1= 10000; break; case OUTPUT_SPEED_50HZ: default: ICR1 = 40000; break; } } void APM_RC_APM1::_set_speed_ch3_ch4_ch10(uint8_t speed) { switch(speed) { case OUTPUT_SPEED_490HZ: ICR5= 4096; break; case OUTPUT_SPEED_200HZ: ICR5= 10000; break; case OUTPUT_SPEED_50HZ: default: ICR5 = 40000; break; } } void APM_RC_APM1::_set_speed_ch7_ch8_ch11(uint8_t speed) { switch(speed) { case OUTPUT_SPEED_490HZ: ICR3 = 4096; break; case OUTPUT_SPEED_200HZ: ICR3 = 10000; break; case OUTPUT_SPEED_50HZ: default: ICR3 = 40000; break; } } void APM_RC_APM1::_set_speed_ch5_ch6(uint8_t speed) { /* This function intentionally left blank: * Can't change output speed of ch5 (OCR4B) and ch6 (OCR4C). * Timer 4 period controlled by OCR4A, and used for input * capture on ICR4. * If the period of Timer 4 must be changed, the input capture * code will have to be adjusted as well */ } // allow HIL override of RC values // A value of -1 means no change // A value of 0 means no override, use the real RC values bool APM_RC_APM1::setHIL(int16_t v[NUM_CHANNELS]) { uint8_t sum = 0; for (uint8_t i=0; i