/* * Copyright (C) 2016 Intel Corporation. All rights reserved. * * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "AP_Compass_BMM150.h" #include <AP_HAL/AP_HAL.h> #include <utility> #include <AP_HAL/utility/sparse-endian.h> #include <AP_Math/AP_Math.h> #include <stdio.h> #define CHIP_ID_REG 0x40 #define CHIP_ID_VAL 0x32 #define POWER_AND_OPERATIONS_REG 0x4B #define POWER_CONTROL_VAL (1 << 0) #define SOFT_RESET (1 << 7 | 1 << 1) #define OP_MODE_SELF_TEST_ODR_REG 0x4C #define NORMAL_MODE (0 << 1) #define ODR_30HZ (1 << 3 | 1 << 4 | 1 << 5) #define ODR_20HZ (1 << 3 | 0 << 4 | 1 << 5) #define DATA_X_LSB_REG 0x42 #define REPETITIONS_XY_REG 0x51 #define REPETITIONS_Z_REG 0X52 /* Trim registers */ #define DIG_X1_REG 0x5D #define DIG_Y1_REG 0x5E #define DIG_Z4_LSB_REG 0x62 #define DIG_Z4_MSB_REG 0x63 #define DIG_X2_REG 0x64 #define DIG_Y2_REG 0x65 #define DIG_Z2_LSB_REG 0x68 #define DIG_Z2_MSB_REG 0x69 #define DIG_Z1_LSB_REG 0x6A #define DIG_Z1_MSB_REG 0x6B #define DIG_XYZ1_LSB_REG 0x6C #define DIG_XYZ1_MSB_REG 0x6D #define DIG_Z3_LSB_REG 0x6E #define DIG_Z3_MSB_REG 0x6F #define DIG_XY2_REG 0x70 #define DIG_XY1_REG 0x71 #define MEASURE_TIME_USEC 16667 extern const AP_HAL::HAL &hal; AP_Compass_Backend *AP_Compass_BMM150::probe(AP_HAL::OwnPtr<AP_HAL::I2CDevice> dev, bool force_external, enum Rotation rotation) { if (!dev) { return nullptr; } AP_Compass_BMM150 *sensor = new AP_Compass_BMM150(std::move(dev), force_external, rotation); if (!sensor || !sensor->init()) { delete sensor; return nullptr; } return sensor; } AP_Compass_BMM150::AP_Compass_BMM150(AP_HAL::OwnPtr<AP_HAL::Device> dev, bool force_external, enum Rotation rotation) : _dev(std::move(dev)), _rotation(rotation), _force_external(force_external) { } bool AP_Compass_BMM150::_load_trim_values() { struct { int8_t dig_x1; int8_t dig_y1; uint8_t rsv[3]; le16_t dig_z4; int8_t dig_x2; int8_t dig_y2; uint8_t rsv2[2]; le16_t dig_z2; le16_t dig_z1; le16_t dig_xyz1; le16_t dig_z3; int8_t dig_xy2; uint8_t dig_xy1; } PACKED trim_registers, trim_registers2; // read the registers twice to confirm we have the right // values. There is no CRC in the registers and these values are // vital to correct operation int8_t tries = 4; while (tries--) { if (!_dev->read_registers(DIG_X1_REG, (uint8_t *)&trim_registers, sizeof(trim_registers))) { continue; } if (!_dev->read_registers(DIG_X1_REG, (uint8_t *)&trim_registers2, sizeof(trim_registers))) { continue; } if (memcmp(&trim_registers, &trim_registers2, sizeof(trim_registers)) == 0) { break; } } if (-1 == tries) { hal.console->printf("BMM150: Failed to load trim registers\n"); return false; } _dig.x1 = trim_registers.dig_x1; _dig.x2 = trim_registers.dig_x2; _dig.xy1 = trim_registers.dig_xy1; _dig.xy2 = trim_registers.dig_xy2; _dig.xyz1 = le16toh(trim_registers.dig_xyz1); _dig.y1 = trim_registers.dig_y1; _dig.y2 = trim_registers.dig_y2; _dig.z1 = le16toh(trim_registers.dig_z1); _dig.z2 = le16toh(trim_registers.dig_z2); _dig.z3 = le16toh(trim_registers.dig_z3); _dig.z4 = le16toh(trim_registers.dig_z4); return true; } bool AP_Compass_BMM150::init() { uint8_t val = 0; bool ret; _dev->get_semaphore()->take_blocking(); // 10 retries for init _dev->set_retries(10); // use checked registers to cope with bus errors _dev->setup_checked_registers(4); int8_t boot_tries = 4; while (boot_tries--) { /* Do a soft reset */ ret = _dev->write_register(POWER_AND_OPERATIONS_REG, SOFT_RESET); hal.scheduler->delay(2); if (!ret) { continue; } /* Change power state from suspend mode to sleep mode */ ret = _dev->write_register(POWER_AND_OPERATIONS_REG, POWER_CONTROL_VAL, true); hal.scheduler->delay(2); if (!ret) { continue; } ret = _dev->read_registers(CHIP_ID_REG, &val, 1); if (!ret) { continue; } if (val == CHIP_ID_VAL) { // found it break; } if (boot_tries == 0) { hal.console->printf("BMM150: Wrong chip ID 0x%02x should be 0x%02x\n", val, CHIP_ID_VAL); } } if (-1 == boot_tries) { goto bus_error; } ret = _load_trim_values(); if (!ret) { goto bus_error; } /* * Recommended preset for high accuracy: * - Rep X/Y = 47 * - Rep Z = 83 * - ODR = 20 * But we are going to use 30Hz of ODR */ ret = _dev->write_register(REPETITIONS_XY_REG, (47 - 1) / 2, true); if (!ret) { goto bus_error; } ret = _dev->write_register(REPETITIONS_Z_REG, 83 - 1, true); if (!ret) { goto bus_error; } /* Change operation mode from sleep to normal and set ODR */ ret = _dev->write_register(OP_MODE_SELF_TEST_ODR_REG, NORMAL_MODE | ODR_30HZ, true); if (!ret) { goto bus_error; } _dev->get_semaphore()->give(); /* register the compass instance in the frontend */ _dev->set_device_type(DEVTYPE_BMM150); if (!register_compass(_dev->get_bus_id(), _compass_instance)) { return false; } set_dev_id(_compass_instance, _dev->get_bus_id()); set_rotation(_compass_instance, _rotation); if (_force_external) { set_external(_compass_instance, true); } // 2 retries for run _dev->set_retries(2); _dev->register_periodic_callback(MEASURE_TIME_USEC, FUNCTOR_BIND_MEMBER(&AP_Compass_BMM150::_update, void)); _last_read_ms = AP_HAL::millis(); return true; bus_error: _dev->get_semaphore()->give(); return false; } /* * Compensation algorithm got from https://github.com/BoschSensortec/BMM050_driver * this is not explained in datasheet. */ int16_t AP_Compass_BMM150::_compensate_xy(int16_t xy, uint32_t rhall, int32_t txy1, int32_t txy2) const { int32_t inter = ((int32_t)_dig.xyz1) << 14; inter /= rhall; inter -= 0x4000; int32_t val = _dig.xy2 * ((inter * inter) >> 7); val += (inter * (((uint32_t)_dig.xy1) << 7)); val >>= 9; val += 0x100000; val *= (txy2 + 0xA0); val >>= 12; val *= xy; val >>= 13; val += (txy1 << 3); return val; } int16_t AP_Compass_BMM150::_compensate_z(int16_t z, uint32_t rhall) const { int32_t dividend = int32_t(z - _dig.z4) << 15; int32_t dividend2 = dividend - ((_dig.z3 * (int32_t(rhall) - int32_t(_dig.xyz1))) >> 2); int32_t divisor = int32_t(_dig.z1) * (rhall << 1); divisor += 0x8000; divisor >>= 16; divisor += _dig.z2; int16_t ret = constrain_int32(dividend2 / divisor, -0x8000, 0x8000); #if 0 static uint8_t counter; if (counter++ == 0) { printf("ret=%d z=%d rhall=%u z1=%d z2=%d z3=%d z4=%d xyz1=%d dividend=%d dividend2=%d divisor=%d\n", ret, z, rhall, _dig.z1, _dig.z2, _dig.z3, _dig.z4, _dig.xyz1, dividend, dividend2, divisor); } #endif return ret; } void AP_Compass_BMM150::_update() { le16_t data[4]; bool ret = _dev->read_registers(DATA_X_LSB_REG, (uint8_t *) &data, sizeof(data)); /* Checking data ready status */ if (!ret || !(data[3] & 0x1)) { _dev->check_next_register(); uint32_t now = AP_HAL::millis(); if (now - _last_read_ms > 250) { // cope with power cycle to sensor _last_read_ms = now; _dev->write_register(POWER_AND_OPERATIONS_REG, SOFT_RESET); _dev->write_register(POWER_AND_OPERATIONS_REG, POWER_CONTROL_VAL, true); } return; } const uint16_t rhall = le16toh(data[3]) >> 2; Vector3f raw_field = Vector3f{ (float) _compensate_xy(((int16_t)le16toh(data[0])) >> 3, rhall, _dig.x1, _dig.x2), (float) _compensate_xy(((int16_t)le16toh(data[1])) >> 3, rhall, _dig.y1, _dig.y2), (float) _compensate_z(((int16_t)le16toh(data[2])) >> 1, rhall)}; /* apply sensitivity scale 16 LSB/uT */ raw_field /= 16; /* convert uT to milligauss */ raw_field *= 10; _last_read_ms = AP_HAL::millis(); accumulate_sample(raw_field, _compass_instance); _dev->check_next_register(); } void AP_Compass_BMM150::read() { drain_accumulated_samples(_compass_instance); }