#include "AP_BattMonitor.h" #include "AP_BattMonitor_Analog.h" #include "AP_BattMonitor_SMBus.h" #include "AP_BattMonitor_Bebop.h" #include extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_BattMonitor::var_info[] = { // @Param: _MONITOR // @DisplayName: Battery monitoring // @Description: Controls enabling monitoring of the battery's voltage and current // @Values: 0:Disabled,3:Analog Voltage Only,4:Analog Voltage and Current,5:Solo,6:Bebop,7:SMBus-Maxell // @User: Standard AP_GROUPINFO("_MONITOR", 0, AP_BattMonitor, _monitoring[0], BattMonitor_TYPE_NONE), // @Param: _VOLT_PIN // @DisplayName: Battery Voltage sensing pin // @Description: Setting this to 0 ~ 13 will enable battery voltage sensing on pins A0 ~ A13. On the PX4-v1 it should be set to 100. On the Pixhawk, Pixracer and NAVIO boards it should be set to 2, Pixhawk2 Power2 is 13. // @Values: -1:Disabled, 0:A0, 1:A1, 2:Pixhawk/Pixracer/Navio2/Pixhawk2_PM1, 13:Pixhawk2_PM2, 100:PX4-v1 // @User: Standard AP_GROUPINFO("_VOLT_PIN", 1, AP_BattMonitor, _volt_pin[0], AP_BATT_VOLT_PIN), // @Param: _CURR_PIN // @DisplayName: Battery Current sensing pin // @Description: Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13. On the PX4-v1 it should be set to 101. On the Pixhawk, Pixracer and NAVIO boards it should be set to 3, Pixhawk2 Power2 is 14. // @Values: -1:Disabled, 1:A1, 2:A2, 3:Pixhawk/Pixracer/Navio2/Pixhawk2_PM1, 14:Pixhawk2_PM2, 101:PX4-v1 // @User: Standard AP_GROUPINFO("_CURR_PIN", 2, AP_BattMonitor, _curr_pin[0], AP_BATT_CURR_PIN), // @Param: _VOLT_MULT // @DisplayName: Voltage Multiplier // @Description: Used to convert the voltage of the voltage sensing pin (BATT_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick on APM2 or Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX4 using the PX4IO power supply this should be set to 1. // @User: Advanced AP_GROUPINFO("_VOLT_MULT", 3, AP_BattMonitor, _volt_multiplier[0], AP_BATT_VOLTDIVIDER_DEFAULT), // @Param: _AMP_PERVOLT // @DisplayName: Amps per volt // @Description: Number of amps that a 1V reading on the current sensor corresponds to. On the APM2 or Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. // @Units: A/V // @User: Standard AP_GROUPINFO("_AMP_PERVOLT", 4, AP_BattMonitor, _curr_amp_per_volt[0], AP_BATT_CURR_AMP_PERVOLT_DEFAULT), // @Param: _AMP_OFFSET // @DisplayName: AMP offset // @Description: Voltage offset at zero current on current sensor // @Units: V // @User: Standard AP_GROUPINFO("_AMP_OFFSET", 5, AP_BattMonitor, _curr_amp_offset[0], 0), // @Param: _CAPACITY // @DisplayName: Battery capacity // @Description: Capacity of the battery in mAh when full // @Units: mA.h // @Increment: 50 // @User: Standard AP_GROUPINFO("_CAPACITY", 6, AP_BattMonitor, _pack_capacity[0], AP_BATT_CAPACITY_DEFAULT), // 7 & 8 were used for VOLT2_PIN and VOLT2_MULT #if APM_BUILD_TYPE(APM_BUILD_ArduPlane) // @Param: _WATT_MAX // @DisplayName: Maximum allowed power (Watts) // @Description: If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable. // @Units: W // @Increment: 1 // @User: Advanced AP_GROUPINFO("_WATT_MAX", 9, AP_BattMonitor, _watt_max[0], AP_BATT_MAX_WATT_DEFAULT), #endif // @Param: _SERIAL_NUM // @DisplayName: Battery serial number // @Description: Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1 // @User: Advanced AP_GROUPINFO("_SERIAL_NUM", 10, AP_BattMonitor, _serial_numbers[0], AP_BATT_SERIAL_NUMBER_DEFAULT), #if AP_BATT_MONITOR_MAX_INSTANCES > 1 // @Param: 2_MONITOR // @DisplayName: Battery monitoring // @Description: Controls enabling monitoring of the battery's voltage and current // @Values: 0:Disabled,3:Analog Voltage Only,4:Analog Voltage and Current,5:Solo,6:Bebop,7:SMBus-Maxell // @User: Standard AP_GROUPINFO("2_MONITOR", 11, AP_BattMonitor, _monitoring[1], BattMonitor_TYPE_NONE), // @Param: 2_VOLT_PIN // @DisplayName: Battery Voltage sensing pin // @Description: Setting this to 0 ~ 13 will enable battery voltage sensing on pins A0 ~ A13. On the PX4-v1 it should be set to 100. On the Pixhawk, Pixracer and NAVIO boards it should be set to 2, Pixhawk2 Power2 is 13. // @Values: -1:Disabled, 0:A0, 1:A1, 2:Pixhawk/Pixracer/Navio2/Pixhawk2_PM1, 13:Pixhawk2_PM2, 100:PX4-v1 // @User: Standard AP_GROUPINFO("2_VOLT_PIN", 12, AP_BattMonitor, _volt_pin[1], AP_BATT_VOLT_PIN), // @Param: 2_CURR_PIN // @DisplayName: Battery Current sensing pin // @Description: Setting this to 0 ~ 13 will enable battery current sensing on pins A0 ~ A13. On the PX4-v1 it should be set to 101. On the Pixhawk, Pixracer and NAVIO boards it should be set to 3, Pixhawk2 Power2 is 14. // @Values: -1:Disabled, 1:A1, 2:A2, 3:Pixhawk/Pixracer/Navio2/Pixhawk2_PM1, 14:Pixhawk2_PM2, 101:PX4-v1 // @User: Standard AP_GROUPINFO("2_CURR_PIN", 13, AP_BattMonitor, _curr_pin[1], AP_BATT_CURR_PIN), // @Param: 2_VOLT_MULT // @DisplayName: Voltage Multiplier // @Description: Used to convert the voltage of the voltage sensing pin (BATT2_VOLT_PIN) to the actual battery's voltage (pin_voltage * VOLT_MULT). For the 3DR Power brick on APM2 or Pixhawk, this should be set to 10.1. For the Pixhawk with the 3DR 4in1 ESC this should be 12.02. For the PX4 using the PX4IO power supply this should be set to 1. // @User: Advanced AP_GROUPINFO("2_VOLT_MULT", 14, AP_BattMonitor, _volt_multiplier[1], AP_BATT_VOLTDIVIDER_DEFAULT), // @Param: 2_AMP_PERVOL // @DisplayName: Amps per volt // @Description: Number of amps that a 1V reading on the current sensor corresponds to. On the APM2 or Pixhawk using the 3DR Power brick this should be set to 17. For the Pixhawk with the 3DR 4in1 ESC this should be 17. // @Units: A/V // @User: Standard AP_GROUPINFO("2_AMP_PERVOL", 15, AP_BattMonitor, _curr_amp_per_volt[1], AP_BATT_CURR_AMP_PERVOLT_DEFAULT), // @Param: 2_AMP_OFFSET // @DisplayName: AMP offset // @Description: Voltage offset at zero current on current sensor // @Units: V // @User: Standard AP_GROUPINFO("2_AMP_OFFSET", 16, AP_BattMonitor, _curr_amp_offset[1], 0), // @Param: 2_CAPACITY // @DisplayName: Battery capacity // @Description: Capacity of the battery in mAh when full // @Units: mA.h // @Increment: 50 // @User: Standard AP_GROUPINFO("2_CAPACITY", 17, AP_BattMonitor, _pack_capacity[1], AP_BATT_CAPACITY_DEFAULT), #if APM_BUILD_TYPE(APM_BUILD_ArduPlane) // @Param: 2_WATT_MAX // @DisplayName: Maximum allowed current // @Description: If battery wattage (voltage * current) exceeds this value then the system will reduce max throttle (THR_MAX, TKOFF_THR_MAX and THR_MIN for reverse thrust) to satisfy this limit. This helps limit high current to low C rated batteries regardless of battery voltage. The max throttle will slowly grow back to THR_MAX (or TKOFF_THR_MAX ) and THR_MIN if demanding the current max and under the watt max. Use 0 to disable. // @Units: A // @Increment: 1 // @User: Advanced AP_GROUPINFO("2_WATT_MAX", 18, AP_BattMonitor, _watt_max[1], AP_BATT_MAX_WATT_DEFAULT), #endif // @Param: 2_SERIAL_NUM // @DisplayName: Battery serial number // @Description: Battery serial number, automatically filled in for SMBus batteries, otherwise will be -1 // @User: Advanced AP_GROUPINFO("2_SERIAL_NUM", 20, AP_BattMonitor, _serial_numbers[1], AP_BATT_SERIAL_NUMBER_DEFAULT), #endif // AP_BATT_MONITOR_MAX_INSTANCES > 1 // @Param: _LOW_TIMER // @DisplayName: Low voltage timeout // @Description: This is the timeout in seconds before a low voltage event will be triggered. For aircraft with low C batteries it may be necessary to raise this in order to cope with low voltage on long takeoffs. A value of zero disables low voltage errors. // @Units: s // @Increment: 1 // @Range: 0 120 // @User: Advanced AP_GROUPINFO("_LOW_TIMER", 21, AP_BattMonitor, _low_voltage_timeout, AP_BATT_LOW_VOLT_TIMEOUT_DEFAULT), // @Param: _LOW_TYPE // @DisplayName: Low voltage type // @Description: Voltage type used for detection of low voltage event // @Values: 0:Raw Voltage, 1:Sag Compensated Voltage // @User: Advanced AP_GROUPINFO("_LOW_TYPE", 22, AP_BattMonitor, _low_voltage_source, BattMonitor_LowVoltageSource_Raw), AP_GROUPEND }; // Default constructor. // Note that the Vector/Matrix constructors already implicitly zero // their values. // AP_BattMonitor::AP_BattMonitor(void) : _num_instances(0) { AP_Param::setup_object_defaults(this, var_info); } // init - instantiate the battery monitors void AP_BattMonitor::init() { // check init has not been called before if (_num_instances != 0) { return; } #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO // force monitor for bebop _monitoring[0] = BattMonitor_TYPE_BEBOP; #endif // create each instance for (uint8_t instance=0; instanceget_device(AP_BATTMONITOR_SMBUS_BUS_INTERNAL, AP_BATTMONITOR_SMBUS_I2C_ADDR)); _num_instances++; break; case BattMonitor_TYPE_MAXELL: state[instance].instance = instance; drivers[instance] = new AP_BattMonitor_SMBus_Maxell(*this, state[instance], hal.i2c_mgr->get_device(AP_BATTMONITOR_SMBUS_BUS_EXTERNAL, AP_BATTMONITOR_SMBUS_I2C_ADDR)); _num_instances++; break; case BattMonitor_TYPE_BEBOP: #if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP || CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_DISCO state[instance].instance = instance; drivers[instance] = new AP_BattMonitor_Bebop(*this, state[instance]); _num_instances++; #endif break; } // call init function for each backend if (drivers[instance] != nullptr) { drivers[instance]->init(); } } } // read - read the voltage and current for all instances void AP_BattMonitor::read() { for (uint8_t i=0; i<_num_instances; i++) { if (drivers[i] != nullptr && _monitoring[i] != BattMonitor_TYPE_NONE) { drivers[i]->read(); drivers[i]->update_resistance_estimate(); } } } // healthy - returns true if monitor is functioning bool AP_BattMonitor::healthy(uint8_t instance) const { return instance < _num_instances && _BattMonitor_STATE(instance).healthy; } bool AP_BattMonitor::is_powering_off(uint8_t instance) const { return instance < _num_instances && _BattMonitor_STATE(instance).is_powering_off; } /// has_current - returns true if battery monitor instance provides current info bool AP_BattMonitor::has_current(uint8_t instance) const { if (instance < _num_instances && drivers[instance] != nullptr && _monitoring[instance] != BattMonitor_TYPE_NONE) { return drivers[instance]->has_current(); } // not monitoring current return false; } /// voltage - returns battery voltage in volts float AP_BattMonitor::voltage(uint8_t instance) const { if (instance < _num_instances) { return _BattMonitor_STATE(instance).voltage; } else { return 0.0f; } } /// get voltage with sag removed (based on battery current draw and resistance) /// this will always be greater than or equal to the raw voltage float AP_BattMonitor::voltage_resting_estimate(uint8_t instance) const { if (instance < _num_instances) { // resting voltage should always be greater than or equal to the raw voltage return MAX(_BattMonitor_STATE(instance).voltage, _BattMonitor_STATE(instance).voltage_resting_estimate); } else { return 0.0f; } } /// current_amps - returns the instantaneous current draw in amperes float AP_BattMonitor::current_amps(uint8_t instance) const { if (instance < _num_instances) { return _BattMonitor_STATE(instance).current_amps; } else { return 0.0f; } } /// current_total_mah - returns total current drawn since start-up in amp-hours float AP_BattMonitor::current_total_mah(uint8_t instance) const { if (instance < _num_instances) { return _BattMonitor_STATE(instance).current_total_mah; } else { return 0.0f; } } /// capacity_remaining_pct - returns the % battery capacity remaining (0 ~ 100) uint8_t AP_BattMonitor::capacity_remaining_pct(uint8_t instance) const { if (instance < _num_instances && drivers[instance] != nullptr) { return drivers[instance]->capacity_remaining_pct(); } else { return 0; } } /// pack_capacity_mah - returns the capacity of the battery pack in mAh when the pack is full int32_t AP_BattMonitor::pack_capacity_mah(uint8_t instance) const { if (instance < AP_BATT_MONITOR_MAX_INSTANCES) { return _pack_capacity[instance]; } else { return 0; } } /// exhausted - returns true if the voltage remains below the low_voltage for 10 seconds or remaining capacity falls below min_capacity_mah bool AP_BattMonitor::exhausted(uint8_t instance, float low_voltage, float min_capacity_mah) { // exit immediately if no monitors setup if (_num_instances == 0 || instance >= _num_instances) { return false; } // use voltage or sag compensated voltage float voltage_used; switch ((enum BattMonitor_LowVoltage_Source)_low_voltage_source.get()) { case BattMonitor_LowVoltageSource_Raw: default: voltage_used = state[instance].voltage; break; case BattMonitor_LowVoltageSource_SagCompensated: voltage_used = voltage_resting_estimate(instance); break; } // check voltage if ((voltage_used > 0) && (low_voltage > 0) && (voltage_used < low_voltage)) { // this is the first time our voltage has dropped below minimum so start timer if (state[instance].low_voltage_start_ms == 0) { state[instance].low_voltage_start_ms = AP_HAL::millis(); } else if (_low_voltage_timeout > 0 && AP_HAL::millis() - state[instance].low_voltage_start_ms > uint32_t(_low_voltage_timeout.get())*1000U) { return true; } } else { // acceptable voltage so reset timer state[instance].low_voltage_start_ms = 0; } // check capacity if current monitoring is enabled if (has_current(instance) && (min_capacity_mah > 0) && (_pack_capacity[instance] - state[instance].current_total_mah < min_capacity_mah)) { return true; } // if we've gotten this far then battery is ok return false; } // return true if any battery is pushing too much power bool AP_BattMonitor::overpower_detected() const { bool result = false; for (uint8_t instance = 0; instance < _num_instances; instance++) { result |= overpower_detected(instance); } return result; } bool AP_BattMonitor::overpower_detected(uint8_t instance) const { #if APM_BUILD_TYPE(APM_BUILD_ArduPlane) if (instance < _num_instances && _watt_max[instance] > 0) { float power = _BattMonitor_STATE(instance).current_amps * _BattMonitor_STATE(instance).voltage; return _BattMonitor_STATE(instance).healthy && (power > _watt_max[instance]); } return false; #else return false; #endif } bool AP_BattMonitor::has_cell_voltages(const uint8_t instance) const { if (instance < _num_instances && drivers[instance] != nullptr) { return drivers[instance]->has_cell_voltages(); } return false; } // return the current cell voltages, returns the first monitor instances cells if the instance is out of range const AP_BattMonitor::cells & AP_BattMonitor::get_cell_voltages(const uint8_t instance) const { if (instance >= AP_BATT_MONITOR_MAX_INSTANCES) { return state[AP_BATT_PRIMARY_INSTANCE].cell_voltages; } else { return state[instance].cell_voltages; } } // returns true if there is a temperature reading bool AP_BattMonitor::get_temperature(float &temperature, const uint8_t instance) const { if (instance >= AP_BATT_MONITOR_MAX_INSTANCES) { return false; } else { temperature = state[instance].temperature; return (AP_HAL::millis() - state[instance].temperature_time) <= AP_BATT_MONITOR_TIMEOUT; } }