// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // Code by Jon Challinger // // This library is free software; you can redistribute it and / or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. #include #include #include "AP_YawController.h" extern const AP_HAL::HAL& hal; const AP_Param::GroupInfo AP_YawController::var_info[] PROGMEM = { AP_GROUPINFO("P", 0, AP_YawController, _kp, 0), AP_GROUPINFO("I", 1, AP_YawController, _ki, 0), AP_GROUPINFO("IMAX", 2, AP_YawController, _imax, 0), AP_GROUPEND }; // Low pass filter cut frequency for derivative calculation. // FCUT macro computes a frequency cut based on an acceptable delay. #define FCUT(d) (1 / ( 2 * 3.14f * (d) ) ) const float AP_YawController::_fCut = FCUT(0.5f); int32_t AP_YawController::get_servo_out(float scaler, bool stick_movement) { uint32_t tnow = hal.scheduler->millis(); uint32_t dt = tnow - _last_t; if (_last_t == 0 || dt > 1000) { dt = 0; } _last_t = tnow; if(_ins == NULL) { // can't control without a reference return 0; } float delta_time = (float) dt / 1000.0f; if(stick_movement) { if(!_stick_movement) { _stick_movement_begin = tnow; } else { if(_stick_movement_begin < tnow-333) { _freeze_start_time = tnow; } } } rate_offset = (9.807f / max(aspeed , float(aspd_min))) * tanf(bank_angle) * cosf(bank_angle) * _K_FF; // Get body rate vector (radians/sec) float omega_z = _ahrs->get_gyro().z; // Subtract the steady turn component of rate from the measured rate // to calculate the rate relative to the turn requirement in degrees/sec float rate_hp_in = ToDeg(omega_z - rate_offset); // Apply a high-pass filter to the rate to washout any steady state error // due to bias errors in rate_offset // Use a cut-off frequency of omega = 0.2 rad/sec // Could make this adjustable by replacing 0.9960080 with (1 - omega * dt) float rate_hp_out = 0.9960080f * _last_rate_hp_out + rate_hp_in - _last_rate_hp_in; _last_rate_hp_out = rate_hp_out; _last_rate_hp_in = rate_hp_in; // Get the accln vector (m/s^2) Vector3f accel = _ins->get_accel(); // Calculate input to integrator float integ_in = - _K_I * (_K_A * accel.y + rate_hp_out); // strongly filter the error float RC = 1/(2*PI*_fCut); error = _last_error + (delta_time / (RC + delta_time)) * (error - _last_error); _last_error = error; // integrator if(_freeze_start_time < (tnow - 2000)) { if ((fabsf(_ki) > 0) && (dt > 0)) { _integrator += (error * _ki) * scaler * delta_time; if (_integrator < -_imax) _integrator = -_imax; else if (_integrator > _imax) _integrator = _imax; } } else { _integrator = 0; } return (error * _kp * scaler) + _integrator; } void AP_YawController::reset_I() { _integrator = 0; }