// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- /// @file AC_AttitudeControl.h /// @brief ArduCopter attitude control library #ifndef AC_AttitudeControl_H #define AC_AttitudeControl_H #include #include #include #include #include #include #include #include #include // To-Do: change the name or move to AP_Math? #define AC_ATTITUDE_CONTROL_DEGX100 5729.57795f // constant to convert from radians to centi-degrees #define AC_ATTITUDE_CONTROL_RATE_RP_MAX_DEFAULT 18000 // maximum rotation rate in roll/pitch axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes #define AC_ATTITUDE_CONTROL_RATE_Y_MAX_DEFAULT 18000 // maximum rotation rate on yaw axis requested by angle controller used in stabilize, loiter, rtl, auto flight modes #define AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT 6000 // default yaw slew rate in centi-degrees/sec (i.e. maximum yaw target change in 1second) #define AC_ATTITUDE_RATE_CONTROLLER_TIMEOUT 1.0f // body-frame rate controller timeout in seconds #define AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX 5000.0f // body-frame rate controller maximum output (for roll-pitch axis) #define AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX 4500.0f // body-frame rate controller maximum output (for yaw axis) #define AC_ATTITUDE_ANGLE_YAW_CONTROLLER_OUT_MAX 4500.0f // earth-frame angle controller maximum output (for yaw axis) #define AC_ATTITUDE_ANGLE_CONTROLLER_ANGLE_MAX 4500.0f // earth-frame angle controller maximum input angle (To-Do: replace with reference to aparm.angle_max) #define AC_ATTITUDE_RATE_STAB_ROLL_OVERSHOOT_ANGLE_MAX 3000.0f // earth-frame rate stabilize controller's maximum overshoot angle #define AC_ATTITUDE_RATE_STAB_PITCH_OVERSHOOT_ANGLE_MAX 3000.0f // earth-frame rate stabilize controller's maximum overshoot angle #define AC_ATTITUDE_RATE_STAB_YAW_OVERSHOOT_ANGLE_MAX 1000.0f // earth-frame rate stabilize controller's maximum overshoot angle #define AC_ATTITUDE_100HZ_DT 0.0100f // delta time in seconds for 100hz update rate #define AC_ATTITUDE_400HZ_DT 0.0025f // delta time in seconds for 400hz update rate class AC_AttitudeControl { public: AC_AttitudeControl( AP_AHRS &ahrs, AP_InertialSensor& ins, const AP_Vehicle::MultiCopter &aparm, AP_Motors& motors, APM_PI& pi_angle_roll, APM_PI& pi_angle_pitch, APM_PI& pi_angle_yaw, AC_PID& pid_rate_roll, AC_PID& pid_rate_pitch, AC_PID& pid_rate_yaw, int16_t& motor_roll, int16_t& motor_pitch, int16_t& motor_yaw, int16_t& motor_throttle ) : _ahrs(ahrs), _ins(ins), _aparm(aparm), _motors(motors), _pi_angle_roll(pi_angle_roll), _pi_angle_pitch(pi_angle_pitch), _pi_angle_yaw(pi_angle_yaw), _pid_rate_roll(pid_rate_roll), _pid_rate_pitch(pid_rate_pitch), _pid_rate_yaw(pid_rate_yaw), _motor_roll(motor_roll), _motor_pitch(motor_pitch), _motor_yaw(motor_yaw), _motor_throttle(motor_throttle), _dt(AC_ATTITUDE_100HZ_DT), _angle_boost(0), _cos_roll(1.0), _cos_pitch(1.0), _sin_roll(0.0), _sin_pitch(0.0) { AP_Param::setup_object_defaults(this, var_info); // initialise flags _flags.limit_angle_to_rate_request = true; } // // initialisation functions // // set_dt - sets time delta in seconds for all controllers (i.e. 100hz = 0.01, 400hz = 0.0025) void set_dt(float delta_sec) { _dt = delta_sec; } float get_dt() { return _dt; } // init_targets - resets target angles to current angles void init_targets(); // angleef_rp_rateef_y - attempts to maintain a roll and pitch angle and yaw rate (all earth frame) void angleef_rp_rateef_y(float roll_angle_ef, float pitch_angle_ef, float yaw_rate_ef); // angleef_rpy - attempts to maintain a roll, pitch and yaw angle (all earth frame) // if yaw_slew is true then target yaw movement will be gradually moved to the new target based on the YAW_SLEW parameter void angleef_rpy(float roll_angle_ef, float pitch_angle_ef, float yaw_angle_ef, bool slew_yaw); // rateef_rpy - attempts to maintain a roll, pitch and yaw rate (all earth frame) void rateef_rpy(float roll_rate_ef, float pitch_rate_ef, float yaw_rate_ef); // ratebf_rpy - attempts to maintain a roll, pitch and yaw rate (all body frame) void ratebf_rpy(float roll_rate_bf, float pitch_rate_bf, float yaw_rate_bf); // limit_angle_to_rate_request void limit_angle_to_rate_request(bool limit_request) { _flags.limit_angle_to_rate_request = limit_request; } // // angle controller (earth-frame) methods // // angle_ef_targets - get and set angle controller earth-frame-targets Vector3f angle_ef_targets() const { return _angle_ef_target; } void angle_ef_targets(Vector3f& angle_cd) { _angle_ef_target = angle_cd; } // angle_to_rate_ef_roll - converts earth-frame angle targets to earth-frame rate targets for roll, pitch and yaw axis // targets angles in centi-degrees should be placed in _angle_ef_targets // results in centi-degrees/sec put directly into _rate_ef_target void angle_to_rate_ef_roll(); void angle_to_rate_ef_pitch(); void angle_to_rate_ef_yaw(); // // stabilized rate controller (earth-frame) methods // // rate_stab_ef_targets - gets and sets the stabilized rate controller earth-frame targets // stabilized rate controllers are better at maintaining a desired rate than the simpler earth-frame rate controllers // because they also maintain angle-targets and increase/decrease the rate request passed to the earth-frame rate controller // upon the errors between the actual angle and angle-target. // Vector3f rate_stab_ef_targets() const { return _rate_stab_ef_target; } void rate_stab_ef_targets(Vector3f& rates_cds) { _rate_stab_ef_target = rates_cds; } // rate_stab_ef_to_rate_ef_roll - converts earth-frame stabilized rate targets to regular earth-frame rate targets for roll, pitch and yaw axis // targets rates in centi-degrees/second taken from _rate_stab_ef_target // results in centi-degrees/sec put into _rate_ef_target void rate_stab_ef_to_rate_ef_roll(); void rate_stab_ef_to_rate_ef_pitch(); void rate_stab_ef_to_rate_ef_yaw(); // // stabilized rate controller (body-frame) methods // // rate_stab_bf_targets - gets and sets the stabilized rate controller body-frame targets Vector3f rate_stab_bf_targets() const { return _rate_stab_bf_target; } void rate_stab_bf_targets(Vector3f& rates_cds) { _rate_stab_bf_target = rates_cds; } // rate_stab_bf_to_rate_ef_roll - converts body-frame stabilized rate targets to regular body-frame rate targets for roll, pitch and yaw axis // targets rates in centi-degrees/second taken from _rate_stab_bf_target // results in centi-degrees/sec put into _rate_bf_target void rate_stab_bf_update_error(); void rate_stab_bf_to_rate_bf_roll(); void rate_stab_bf_to_rate_bf_pitch(); void rate_stab_bf_to_rate_bf_yaw(); // // rate controller (earth-frame) methods // // rate_ef_targets - gets and sets rate controller earth-frame-targets Vector3f rate_ef_targets() const { return _rate_ef_target; } void rate_ef_targets(Vector3f& rates_cds) { _rate_ef_target = rates_cds; } // rate_ef_targets_to_bf - converts earth frame rate targets to body frame rate targets void rate_ef_targets_to_bf(const Vector3f& rate_ef_target, Vector3f &rate_bf_target); // // rate controller (body-frame) methods // // rate_bf_targets - gets and sets rate controller body-frame targets // To-Do: can we return these Vector3fs by reference? i.e. using "&"? Vector3f rate_bf_targets() const { return _rate_bf_target; } void rate_bf_targets(Vector3f& rates_cds) { _rate_bf_target = rates_cds; } void rate_bf_roll_target(float rate_cds) { _rate_bf_target.x = rate_cds; } void rate_bf_pitch_target(float rate_cds) { _rate_bf_target.y = rate_cds; } void rate_bf_yaw_target(float rate_cds) { _rate_bf_target.z = rate_cds; } // rate_controller_run - run lowest level body-frame rate controller and send outputs to the motors // should be called at 100hz or more virtual void rate_controller_run(); // // throttle functions // // set_throttle_out - to be called by upper throttle controllers when they wish to provide throttle output directly to motors // provide 0 to cut motors void set_throttle_out(int16_t throttle_pwm, bool apply_angle_boost); // angle_boost - accessor for angle boost so it can be logged int16_t angle_boost() const { return _angle_boost; } // // helper functions // /// set_cos_sin_yaw - short-cut to save on calculations to convert from roll-pitch frame to lat-lon frame /// To-Do: make these references or calculate in ahrs void set_cos_sin_yaw(float cos_roll, float cos_pitch, float sin_roll, float sin_pitch) { _cos_roll = cos_roll; _cos_pitch = cos_pitch; _sin_roll = sin_roll; _sin_pitch = sin_pitch; } // lean_angle_max - maximum lean angle of the copter in centi-degrees int16_t lean_angle_max() { return _aparm.angle_max; } // user settable parameters static const struct AP_Param::GroupInfo var_info[]; protected: // attitude control flags struct AttControlFlags { uint8_t limit_angle_to_rate_request : 1; // 1 if the earth frame angle controller is limiting it's maximum rate request } _flags; // // body-frame rate controller // // rate_bf_to_motor_roll - ask the rate controller to calculate the motor outputs to achieve the target body-frame rate (in centi-degrees/sec) for roll, pitch and yaw float rate_bf_to_motor_roll(float rate_target_cds); float rate_bf_to_motor_pitch(float rate_target_cds); virtual float rate_bf_to_motor_yaw(float rate_target_cds); // // throttle methods // // get_angle_boost - calculate total body frame throttle required to produce the given earth frame throttle virtual int16_t get_angle_boost(int16_t throttle_pwm); // // logging // // log data on internal state of the controller. Called at 10Hz void log_data(DataFlash_Class &dataflash, uint8_t msgid); // dataflash logging packet struct PACKED log_Attitude { LOG_PACKET_HEADER; int16_t roll_in; int16_t roll; int16_t pitch_in; int16_t pitch; int16_t yaw_in; uint16_t yaw; uint16_t nav_yaw; } log_ACAttControl; // references to external libraries const AP_AHRS& _ahrs; const AP_InertialSensor& _ins; const AP_Vehicle::MultiCopter &_aparm; AP_Motors& _motors; APM_PI& _pi_angle_roll; APM_PI& _pi_angle_pitch; APM_PI& _pi_angle_yaw; AC_PID& _pid_rate_roll; AC_PID& _pid_rate_pitch; AC_PID& _pid_rate_yaw; int16_t& _motor_roll; // g.rc_1.servo_out int16_t& _motor_pitch; // g.rc_2.servo_out int16_t& _motor_yaw; // g.rc_4.servo_out int16_t& _motor_throttle; // g.rc_3.servo_out // parameters AP_Float _angle_rate_rp_max; // maximum rate request output from the earth-frame angle controller for roll and pitch axis AP_Float _angle_rate_y_max; // maximum rate request output from the earth-frame angle controller for yaw axis AP_Float _slew_yaw; // maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes // internal variables // To-Do: make rate targets a typedef instead of Vector3f? float _dt; // time delta in seconds Vector3f _angle_ef_target; // angle controller earth-frame targets Vector3f _rate_stab_ef_target; // stabilized rate controller earth-frame rate targets Vector3f _rate_ef_target; // rate controller earth-frame targets Vector3f _rate_stab_bf_target; // stabilized rate controller body-frame rate targets Vector3f _rate_stab_bf_error; // stabilized rate controller body-frame angle errors Vector3f _rate_bf_target; // rate controller body-frame targets int16_t _angle_boost; // used only for logging // precalculated values for efficiency saves // To-Do: could these be changed to references and passed into the constructor? float _cos_roll; float _cos_pitch; float _sin_roll; float _sin_pitch; }; #define AC_ATTITUDE_CONTROL_LOG_FORMAT(msg) { msg, sizeof(AC_AttitudeControl::log_Attitude), \ "ATT", "cccccCC", "RollIn,Roll,PitchIn,Pitch,YawIn,Yaw,NavYaw" } #endif //AC_AttitudeControl_H