/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
24 state EKF based on https://github.com/priseborough/InertialNav
Converted from Matlab to C++ by Paul Riseborough
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifndef AP_NavEKF
#define AP_NavEKF
#include
#include
#include
#include
#include
#include
#include
class NavEKF
{
public:
// Constructor
NavEKF(const AP_AHRS &ahrs, AP_Baro &baro);
// Initialise the filter states from the AHRS and magnetometer data (if present)
void InitialiseFilter(void);
// Update Filter States - this should be called whenever new IMU data is available
void UpdateFilter(void);
// fill in latitude, longitude and height of the reference point
void getRefLLH(struct Location &loc);
// return the last calculated NED position relative to the
// reference point (m). Return false if no position is available
bool getPosNED(Vector3f &pos);
// return the last calculated NED velocity (m/s)
void getVelNED(Vector3f &vel);
// return the last calculated latitude, longitude and height
bool getLLH(struct Location &loc);
// return the Euler roll, pitch and yaw angle in radians
void getEulerAngles(Vector3f &eulers);
// get the transformation matrix from NED to XYD (body) axes
void getRotationNEDToBody(Matrix3f &mat);
// get the transformation matrix from XYZ (body) to NED axes
void getRotationBodyToNED(Matrix3f &mat);
// get the quaternions defining the rotation from NED to XYZ (body) axes
void getQuaternion(Quaternion &quat);
private:
const AP_AHRS &_ahrs;
AP_Baro &_baro;
void UpdateStrapdownEquationsNED();
void CovariancePrediction();
void FuseVelPosNED();
void FuseMagnetometer();
void FuseAirspeed();
void zeroRows(float covMat[24][24], uint8_t first, uint8_t last);
void zeroCols(float covMat[24][24], uint8_t first, uint8_t last);
void quatNorm(float quatOut[4], float quatIn[4]);
// store states along with system time stamp in msces
void StoreStates(void);
// recall state vector stored at closest time to the one specified by msec
void RecallStates(float statesForFusion[24], uint32_t msec);
void quat2Tnb(Matrix3f &Tnb, float quat[4]);
void quat2Tbn(Matrix3f &Tbn, float quat[4]);
void calcEarthRateNED(Vector3f &omega, float latitude);
void eul2quat(float quat[4], float eul[3]);
void quat2eul(float eul[3],float quat[4]);
void calcvelNED(float velNED[3], float gpsCourse, float gpsGndSpd, float gpsVelD);
void calcposNE(float lat, float lon);
void calcllh(float &lat, float &lon, float &hgt);
void OnGroundCheck();
void CovarianceInit();
void readIMUData();
void readGpsData();
void readHgtData();
void readMagData();
void readAirSpdData();
void SelectVelPosFusion();
void SelectHgtFusion();
void SelectTasFusion();
void SelectMagFusion();
bool statesInitialised;
float KH[24][24]; // intermediate result used for covariance updates
float KHP[24][24]; // intermediate result used for covariance updates
float P[24][24]; // covariance matrix
float states[24]; // state matrix - 4 x quaternions, 3 x Vel, 3 x Pos, 3 x gyro bias, 3 x accel bias, 2 x wind vel, 3 x earth mag field, 3 x body mag field
float storedStates[24][50]; // state vectors stored for the last 50 time steps
uint32_t statetimeStamp[50]; // time stamp for each state vector stored
Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad)
Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s)
Vector3f summedDelAng; // corrected & summed delta angles about the xyz body axes (rad)
Vector3f summedDelVel; // corrected & summed delta velocities along the XYZ body axes (m/s)
Vector3f prevDelAng; // previous delta angle use for INS coning error compensation
Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation
float accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2)
Vector3f earthRateNED; // earths angular rate vector in NED (rad/s)
Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s)
Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad)
float dtIMU; // time lapsed since the last IMU measurement (sec)
float dt; // time lapsed since the last covariance prediction (sec)
bool onGround; // boolean true when the flight vehicle is on the ground (not flying)
const bool useAirspeed; // boolean true if airspeed data is being used
const bool useCompass; // boolean true if magnetometer data is being used
const uint8_t fusionModeGPS; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity
float innovVelPos[6]; // innovation output for a group of measurements
float varInnovVelPos[6]; // innovation variance output for a group of measurements
bool fuseVelData; // this boolean causes the velNED measurements to be fused
bool fusePosData; // this boolean causes the posNE measurements to be fused
bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused
float velNED[3]; // North, East, Down velocity measurements (m/s)
float posNE[2]; // North, East position measurements (m)
float hgtMea; // height measurement relative to reference point (m)
float posNED[3]; // North, East Down position relative to reference point (m)
float statesAtVelTime[24]; // States at the effective time of velNED measurements
float statesAtPosTime[24]; // States at the effective time of posNE measurements
float statesAtHgtTime[24]; // States at the effective time of hgtMea measurement
float innovMag[3]; // innovation output from fusion of X,Y,Z compass measurements
float varInnovMag[3]; // innovation variance output from fusion of X,Y,Z compass measurements
bool fuseMagData; // boolean true when magnetometer data is to be fused
Vector3f magData; // magnetometer flux readings in X,Y,Z body axes
float statesAtMagMeasTime[24]; // filter states at the effective time of compass measurements
float innovVtas; // innovation output from fusion of airspeed measurements
float varInnovVtas; // innovation variance output from fusion of airspeed measurements
bool fuseVtasData; // boolean true when airspeed data is to be fused
float VtasMeas; // true airspeed measurement (m/s)
float statesAtVtasMeasTime[24]; // filter states at the effective measurement time
float latRef; // WGS-84 latitude of reference point (rad)
float lonRef; // WGS-84 longitude of reference point (rad)
float hgtRef; // WGS-84 height of reference point (m)
Vector3f magBias; // magnetometer bias vector in XYZ body axes
float eulerEst[3]; // Euler angles calculated from filter states
float eulerDif[3]; // difference between Euler angle estimated by EKF and the AHRS solution
const float covTimeStepMax; // maximum time allowed between covariance predictions
const float covDelAngMax; // maximum delta angle between covariance predictions
bool covPredStep; // boolean set to true when a covariance prediction step has been performed
bool magFuseStep; // boolean set to true when magnetometer fusion is being performed
bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed
bool tasFuseStep; // boolean set to true when airspeed fusion is being performed
uint32_t TASmsecPrev; // time stamp of last TAS fusion step
const uint32_t TASmsecTgt; // target interval between TAS fusion steps
uint32_t MAGmsecPrev; // time stamp of last compass fusion step
const uint32_t MAGmsecTgt; // target interval between compass fusion steps
uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step
const uint32_t HGTmsecTgt; // target interval between height measurement fusion steps
// Estimated time delays (msec) for different measurements relative to IMU
const uint32_t msecVelDelay;
const uint32_t msecPosDelay;
const uint32_t msecHgtDelay;
const uint32_t msecMagDelay;
const uint32_t msecTasDelay;
// IMU input data variables
float imuIn;
float tempImu[8];
uint32_t IMUmsec;
// GPS input data variables
float gpsCourse;
float gpsGndSpd;
float gpsLat;
float gpsLon;
float gpsHgt;
bool newDataGps;
// Magnetometer input data variables
float magIn;
float tempMag[8];
float tempMagPrev[8];
uint32_t MAGframe;
uint32_t MAGtime;
uint32_t lastMAGtime;
bool newDataMag;
// AHRS input data variables
float ahrsEul[3];
// Time stamp when vel, pos or height measurements last failed checks
uint32_t velFailTime;
uint32_t posFailTime;
uint32_t hgtFailTime;
// states held by magnetomter fusion across time steps
// magnetometer X,Y,Z measurements are fused across three time steps
// to
struct {
float q0;
float q1;
float q2;
float q3;
float magN;
float magE;
float magD;
float magXbias;
float magYbias;
float magZbias;
uint8_t obsIndex;
Matrix3f DCM;
Vector3f MagPred;
float R_MAG;
float SH_MAG[9];
} mag_state;
// State vector storage index
uint8_t storeIndex;
// high precision time stamp for previous IMU data processing
uint32_t lastIMUusec;
// time of alst GPS fix used to determine if new data has arrived
uint32_t lastFixTime;
};
#endif // AP_NavEKF