/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* 24 state EKF based on https://github.com/priseborough/InertialNav Converted from Matlab to C++ by Paul Riseborough This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef AP_NavEKF #define AP_NavEKF #include #include #include #include #include #include #include class NavEKF { public: // Constructor NavEKF(const AP_AHRS &ahrs, AP_Baro &baro); // Initialise the filter states from the AHRS and magnetometer data (if present) void InitialiseFilter(void); // Update Filter States - this should be called whenever new IMU data is available void UpdateFilter(void); // fill in latitude, longitude and height of the reference point void getRefLLH(struct Location &loc); // return the last calculated NED position relative to the // reference point (m). Return false if no position is available bool getPosNED(Vector3f &pos); // return the last calculated NED velocity (m/s) void getVelNED(Vector3f &vel); // return the last calculated latitude, longitude and height bool getLLH(struct Location &loc); // return the Euler roll, pitch and yaw angle in radians void getEulerAngles(Vector3f &eulers); // get the transformation matrix from NED to XYD (body) axes void getRotationNEDToBody(Matrix3f &mat); // get the transformation matrix from XYZ (body) to NED axes void getRotationBodyToNED(Matrix3f &mat); // get the quaternions defining the rotation from NED to XYZ (body) axes void getQuaternion(Quaternion &quat); private: const AP_AHRS &_ahrs; AP_Baro &_baro; void UpdateStrapdownEquationsNED(); void CovariancePrediction(); void FuseVelPosNED(); void FuseMagnetometer(); void FuseAirspeed(); void zeroRows(float covMat[24][24], uint8_t first, uint8_t last); void zeroCols(float covMat[24][24], uint8_t first, uint8_t last); void quatNorm(float quatOut[4], float quatIn[4]); // store states along with system time stamp in msces void StoreStates(void); // recall state vector stored at closest time to the one specified by msec void RecallStates(float statesForFusion[24], uint32_t msec); void quat2Tnb(Matrix3f &Tnb, float quat[4]); void quat2Tbn(Matrix3f &Tbn, float quat[4]); void calcEarthRateNED(Vector3f &omega, float latitude); void eul2quat(float quat[4], float eul[3]); void quat2eul(float eul[3],float quat[4]); void calcvelNED(float velNED[3], float gpsCourse, float gpsGndSpd, float gpsVelD); void calcposNE(float lat, float lon); void calcllh(float &lat, float &lon, float &hgt); void OnGroundCheck(); void CovarianceInit(); void readIMUData(); void readGpsData(); void readHgtData(); void readMagData(); void readAirSpdData(); void SelectVelPosFusion(); void SelectHgtFusion(); void SelectTasFusion(); void SelectMagFusion(); bool statesInitialised; float KH[24][24]; // intermediate result used for covariance updates float KHP[24][24]; // intermediate result used for covariance updates float P[24][24]; // covariance matrix float states[24]; // state matrix - 4 x quaternions, 3 x Vel, 3 x Pos, 3 x gyro bias, 3 x accel bias, 2 x wind vel, 3 x earth mag field, 3 x body mag field float storedStates[24][50]; // state vectors stored for the last 50 time steps uint32_t statetimeStamp[50]; // time stamp for each state vector stored Vector3f correctedDelAng; // delta angles about the xyz body axes corrected for errors (rad) Vector3f correctedDelVel; // delta velocities along the XYZ body axes corrected for errors (m/s) Vector3f summedDelAng; // corrected & summed delta angles about the xyz body axes (rad) Vector3f summedDelVel; // corrected & summed delta velocities along the XYZ body axes (m/s) Vector3f prevDelAng; // previous delta angle use for INS coning error compensation Matrix3f prevTnb; // previous nav to body transformation used for INS earth rotation compensation float accNavMag; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2) Vector3f earthRateNED; // earths angular rate vector in NED (rad/s) Vector3f dVelIMU; // delta velocity vector in XYZ body axes measured by the IMU (m/s) Vector3f dAngIMU; // delta angle vector in XYZ body axes measured by the IMU (rad) float dtIMU; // time lapsed since the last IMU measurement (sec) float dt; // time lapsed since the last covariance prediction (sec) bool onGround; // boolean true when the flight vehicle is on the ground (not flying) const bool useAirspeed; // boolean true if airspeed data is being used const bool useCompass; // boolean true if magnetometer data is being used const uint8_t fusionModeGPS; // 0 = GPS outputs 3D velocity, 1 = GPS outputs 2D velocity, 2 = GPS outputs no velocity float innovVelPos[6]; // innovation output for a group of measurements float varInnovVelPos[6]; // innovation variance output for a group of measurements bool fuseVelData; // this boolean causes the velNED measurements to be fused bool fusePosData; // this boolean causes the posNE measurements to be fused bool fuseHgtData; // this boolean causes the hgtMea measurements to be fused float velNED[3]; // North, East, Down velocity measurements (m/s) float posNE[2]; // North, East position measurements (m) float hgtMea; // height measurement relative to reference point (m) float posNED[3]; // North, East Down position relative to reference point (m) float statesAtVelTime[24]; // States at the effective time of velNED measurements float statesAtPosTime[24]; // States at the effective time of posNE measurements float statesAtHgtTime[24]; // States at the effective time of hgtMea measurement float innovMag[3]; // innovation output from fusion of X,Y,Z compass measurements float varInnovMag[3]; // innovation variance output from fusion of X,Y,Z compass measurements bool fuseMagData; // boolean true when magnetometer data is to be fused Vector3f magData; // magnetometer flux readings in X,Y,Z body axes float statesAtMagMeasTime[24]; // filter states at the effective time of compass measurements float innovVtas; // innovation output from fusion of airspeed measurements float varInnovVtas; // innovation variance output from fusion of airspeed measurements bool fuseVtasData; // boolean true when airspeed data is to be fused float VtasMeas; // true airspeed measurement (m/s) float statesAtVtasMeasTime[24]; // filter states at the effective measurement time float latRef; // WGS-84 latitude of reference point (rad) float lonRef; // WGS-84 longitude of reference point (rad) float hgtRef; // WGS-84 height of reference point (m) Vector3f magBias; // magnetometer bias vector in XYZ body axes float eulerEst[3]; // Euler angles calculated from filter states float eulerDif[3]; // difference between Euler angle estimated by EKF and the AHRS solution const float covTimeStepMax; // maximum time allowed between covariance predictions const float covDelAngMax; // maximum delta angle between covariance predictions bool covPredStep; // boolean set to true when a covariance prediction step has been performed bool magFuseStep; // boolean set to true when magnetometer fusion is being performed bool posVelFuseStep; // boolean set to true when position and velocity fusion is being performed bool tasFuseStep; // boolean set to true when airspeed fusion is being performed uint32_t TASmsecPrev; // time stamp of last TAS fusion step const uint32_t TASmsecTgt; // target interval between TAS fusion steps uint32_t MAGmsecPrev; // time stamp of last compass fusion step const uint32_t MAGmsecTgt; // target interval between compass fusion steps uint32_t HGTmsecPrev; // time stamp of last height measurement fusion step const uint32_t HGTmsecTgt; // target interval between height measurement fusion steps // Estimated time delays (msec) for different measurements relative to IMU const uint32_t msecVelDelay; const uint32_t msecPosDelay; const uint32_t msecHgtDelay; const uint32_t msecMagDelay; const uint32_t msecTasDelay; // IMU input data variables float imuIn; float tempImu[8]; uint32_t IMUmsec; // GPS input data variables float gpsCourse; float gpsGndSpd; float gpsLat; float gpsLon; float gpsHgt; bool newDataGps; // Magnetometer input data variables float magIn; float tempMag[8]; float tempMagPrev[8]; uint32_t MAGframe; uint32_t MAGtime; uint32_t lastMAGtime; bool newDataMag; // AHRS input data variables float ahrsEul[3]; // Time stamp when vel, pos or height measurements last failed checks uint32_t velFailTime; uint32_t posFailTime; uint32_t hgtFailTime; // states held by magnetomter fusion across time steps // magnetometer X,Y,Z measurements are fused across three time steps // to struct { float q0; float q1; float q2; float q3; float magN; float magE; float magD; float magXbias; float magYbias; float magZbias; uint8_t obsIndex; Matrix3f DCM; Vector3f MagPred; float R_MAG; float SH_MAG[9]; } mag_state; // State vector storage index uint8_t storeIndex; // high precision time stamp for previous IMU data processing uint32_t lastIMUusec; // time of alst GPS fix used to determine if new data has arrived uint32_t lastFixTime; }; #endif // AP_NavEKF