/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <AP_RCProtocol/AP_RCProtocol_config.h> #ifdef HAL_PERIPH_ENABLE_RCIN #ifndef AP_PERIPH_RC1_PORT_DEFAULT #define AP_PERIPH_RC1_PORT_DEFAULT -1 #endif #ifndef AP_PERIPH_RC1_PORT_OPTIONS_DEFAULT #define AP_PERIPH_RC1_PORT_OPTIONS_DEFAULT 0 #endif #include <AP_RCProtocol/AP_RCProtocol.h> #include "AP_Periph.h" #include <dronecan_msgs.h> extern const AP_HAL::HAL &hal; const AP_Param::GroupInfo Parameters_RCIN::var_info[] { // RC_PROTOCOLS copied from RC_Channel/RC_Channels_Varinfo.h // @Param: _PROTOCOLS // @DisplayName: RC protocols enabled // @Description: Bitmask of enabled RC protocols. Allows narrowing the protocol detection to only specific types of RC receivers which can avoid issues with incorrect detection. Set to 1 to enable all protocols. // @User: Advanced // @Bitmask: 0:All,1:PPM,2:IBUS,3:SBUS,4:SBUS_NI,5:DSM,6:SUMD,7:SRXL,8:SRXL2,9:CRSF,10:ST24,11:FPORT,12:FPORT2,13:FastSBUS AP_GROUPINFO("_PROTOCOLS", 1, Parameters_RCIN, rcin_protocols, 1), // RC_PROTOCOLS copied from RC_Channel/RC_Channels_Varinfo.h // @Param: _MSGRATE // @DisplayName: DroneCAN RC Message rate // @Description: Rate at which RC input is sent via DroneCAN // @User: Advanced // @Increment: 1 // @Range: 0 255 // @Units: Hz AP_GROUPINFO("_MSGRATE", 2, Parameters_RCIN, rcin_rate_hz, 50), // @Param: 1_PORT // @DisplayName: RC input port // @Description: This is the serial port number where SERIALx_PROTOCOL will be set to RC input. // @Range: 0 10 // @Increment: 1 // @User: Advanced // @RebootRequired: True AP_GROUPINFO("_PORT", 3, Parameters_RCIN, rcin1_port, AP_PERIPH_RC1_PORT_DEFAULT), // @Param: 1_PORT_OPTIONS // @DisplayName: RC input port serial options // @Description: Control over UART options. The InvertRX option controls invert of the receive pin. The InvertTX option controls invert of the transmit pin. The HalfDuplex option controls half-duplex (onewire) mode, where both transmit and receive is done on the transmit wire. The Swap option allows the RX and TX pins to be swapped on STM32F7 based boards. // @Bitmask: 0:InvertRX, 1:InvertTX, 2:HalfDuplex, 3:SwapTXRX, 4: RX_PullDown, 5: RX_PullUp, 6: TX_PullDown, 7: TX_PullUp, 8: RX_NoDMA, 9: TX_NoDMA, 10: Don't forward mavlink to/from, 11: DisableFIFO, 12: Ignore Streamrate AP_GROUPINFO("1_PORT_OPTIONS", 4, Parameters_RCIN, rcin1_port_options, AP_PERIPH_RC1_PORT_OPTIONS_DEFAULT), // @RebootRequired: True AP_GROUPEND }; Parameters_RCIN::Parameters_RCIN(void) { AP_Param::setup_object_defaults(this, var_info); } void AP_Periph_FW::rcin_init() { if (g_rcin.rcin1_port < 0) { return; } // init uart for serial RC auto *uart = hal.serial(g_rcin.rcin1_port); if (uart == nullptr) { return; } uart->set_options(g_rcin.rcin1_port_options); serial_manager.set_protocol_and_baud( g_rcin.rcin1_port, AP_SerialManager::SerialProtocol_RCIN, 115200 // baud doesn't matter; RC Protocol autobauds ); auto &rc = AP::RC(); rc.init(); rc.set_rc_protocols(g_rcin.rcin_protocols); rc.add_uart(uart); rcin_initialised = true; } void AP_Periph_FW::rcin_update() { if (!rcin_initialised) { return; } auto &rc = AP::RC(); if (!rc.new_input()) { return; } // log discovered protocols: auto new_rc_protocol = rc.protocol_name(); if (new_rc_protocol != rcin_rc_protocol) { can_printf("Decoding (%s)", new_rc_protocol); rcin_rc_protocol = new_rc_protocol; } // decimate the input to a parameterized rate const uint8_t rate_hz = g_rcin.rcin_rate_hz; if (rate_hz == 0) { return; } const auto now_ms = AP_HAL::millis(); const auto interval_ms = 1000U / rate_hz; if (now_ms - rcin_last_sent_RCInput_ms < interval_ms) { return; } rcin_last_sent_RCInput_ms = now_ms; // extract data and send CAN packet: const uint8_t num_channels = rc.num_channels(); uint16_t channels[MAX_RCIN_CHANNELS]; rc.read(channels, num_channels); const int16_t rssi = rc.get_RSSI(); can_send_RCInput((uint8_t)rssi, channels, num_channels, rc.failsafe_active(), rssi > 0 && rssi <256); } /* send an RCInput CAN message */ void AP_Periph_FW::can_send_RCInput(uint8_t quality, uint16_t *values, uint8_t nvalues, bool in_failsafe, bool quality_valid) { uint16_t status = 0; if (quality_valid) { status |= DRONECAN_SENSORS_RC_RCINPUT_STATUS_QUALITY_VALID; } if (in_failsafe) { status |= DRONECAN_SENSORS_RC_RCINPUT_STATUS_FAILSAFE; } // assemble packet dronecan_sensors_rc_RCInput pkt {}; pkt.quality = quality; pkt.status = status; pkt.rcin.len = nvalues; for (uint8_t i=0; i<nvalues; i++) { pkt.rcin.data[i] = values[i]; } // encode and send message: uint8_t buffer[DRONECAN_SENSORS_RC_RCINPUT_MAX_SIZE]; uint16_t total_size = dronecan_sensors_rc_RCInput_encode(&pkt, buffer, !periph.canfdout()); canard_broadcast(DRONECAN_SENSORS_RC_RCINPUT_SIGNATURE, DRONECAN_SENSORS_RC_RCINPUT_ID, CANARD_TRANSFER_PRIORITY_HIGH, buffer, total_size); } #endif // HAL_PERIPH_ENABLE_RCIN