/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "SRV_Channel/SRV_Channel.h" #include "AP_MotorsUGV.h" #include "Rover.h" extern const AP_HAL::HAL& hal; // parameters for the motor class const AP_Param::GroupInfo AP_MotorsUGV::var_info[] = { // @Param: PWM_TYPE // @DisplayName: Output PWM type // @Description: This selects the output PWM type as regular PWM, OneShot, Brushed motor support using PWM (duty cycle) with separated direction signal, Brushed motor support with separate throttle and direction PWM (duty cyle) // @Values: 0:Normal,1:OneShot,2:OneShot125,3:Brushed,4:BrushedBiPolar // @User: Advanced // @RebootRequired: True AP_GROUPINFO("PWM_TYPE", 1, AP_MotorsUGV, _pwm_type, PWM_TYPE_NORMAL), // @Param: PWM_FREQ // @DisplayName: Output PWM freq for brushed motors // @Description: Output PWM freq for brushed motors // @Units: kHz // @Range: 1 20 // @Increment: 1 // @User: Advanced // @RebootRequired: True AP_GROUPINFO("PWM_FREQ", 2, AP_MotorsUGV, _pwm_freq, 16), // @Param: SAFE_DISARM // @DisplayName: Motor PWM output disabled when disarmed // @Description: Disables motor PWM output when disarmed // @Values: 0:PWM enabled while disarmed, 1:PWM disabled while disarmed // @User: Advanced AP_GROUPINFO("SAFE_DISARM", 3, AP_MotorsUGV, _disarm_disable_pwm, 0), // @Param: THR_SLEWRATE // @DisplayName: Throttle slew rate // @Description: maximum percentage change in throttle per second. A setting of 10 means to not change the throttle by more than 10% of the full throttle range in one second. A value of zero means no limit. A value of 100 means the throttle can change over its full range in one second. Note that for some NiMH powered rovers setting a lower value like 40 or 50 may be worthwhile as the sudden current demand on the battery of a big rise in throttle may cause a brownout. // @Units: %/s // @Range: 0 100 // @Increment: 1 // @User: Standard AP_GROUPINFO("SLEWRATE", 4, AP_MotorsUGV, _slew_rate, 100), AP_GROUPEND }; AP_MotorsUGV::AP_MotorsUGV(AP_ServoRelayEvents &relayEvents) : _relayEvents(relayEvents) { AP_Param::setup_object_defaults(this, var_info); } void AP_MotorsUGV::init() { // setup servo ouput setup_servo_output(); // setup pwm type setup_pwm_type(); // set safety output setup_safety_output(); } /* work out if skid steering is available */ bool AP_MotorsUGV::have_skid_steering() const { if (SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft) && SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { return true; } return false; } void AP_MotorsUGV::output(bool armed, float dt) { // soft-armed overrides passed in armed status if (!hal.util->get_soft_armed()) { armed = false; } // ensure steering and throttle are within limits _steering = constrain_float(_steering, -4500.0f, 4500.0f); _throttle = constrain_float(_throttle, -100.0f, 100.0f); slew_limit_throttle(dt); // output for regular steering/throttle style frames output_regular(armed, _steering, _throttle); // output for skid steering style frames output_skid_steering(armed, _steering, _throttle); // send values to the PWM timers for output SRV_Channels::calc_pwm(); hal.rcout->cork(); SRV_Channels::output_ch_all(); hal.rcout->push(); _last_throttle = _throttle; } // output to regular steering and throttle channels void AP_MotorsUGV::output_regular(bool armed, float steering, float throttle) { // always allow steering to move SRV_Channels::set_output_scaled(SRV_Channel::k_steering, steering); // output to throttle channels if (armed) { // handle armed case SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle); } else { // handle disarmed case if (_disarm_disable_pwm) { SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } else { SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } } } // output to skid steering channels void AP_MotorsUGV::output_skid_steering(bool armed, float steering, float throttle) { // handle simpler disarmed case if (!armed) { if (_disarm_disable_pwm) { SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } else { SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } return; } // skid steering mixer float steering_scaled = steering / 4500.0f; // steering scaled -1 to +1 float throttle_scaled = throttle / 100.0f; // throttle scaled -1 to +1 // apply constraints steering_scaled = constrain_float(steering_scaled, -1.0f, 1.0f); throttle_scaled = constrain_float(throttle_scaled, -1.0f, 1.0f); // check for saturation and scale back throttle and steering proportionally const float saturation_value = fabsf(steering_scaled) + fabsf(throttle_scaled); if (saturation_value > 1.0f) { steering_scaled = steering_scaled / saturation_value; throttle_scaled = throttle_scaled / saturation_value; } // add in throttle float motor_left = throttle_scaled; float motor_right = throttle_scaled; // deal with case of turning on the spot if (is_zero(throttle_scaled)) { // full possible range is not used to keep response equivalent to non-zero throttle case motor_left += steering_scaled * 0.5f; motor_right -= steering_scaled * 0.5f; } else { // add in steering const float dir = is_positive(throttle_scaled) ? 1.0f : -1.0f; if (is_negative(steering_scaled)) { // moving left all steering to right wheel motor_right -= dir * steering_scaled; } else { // turning right, all steering to left wheel motor_left += dir * steering_scaled; } } // send pwm value to each motor output_throttle(SRV_Channel::k_throttleLeft, 100.0f * motor_left); output_throttle(SRV_Channel::k_throttleRight, 100.0f * motor_right); } // output throttle value to main throttle channel, left throttle or right throttle. throttle should be scaled from -100 to 100 void AP_MotorsUGV::output_throttle(SRV_Channel::Aux_servo_function_t function, float throttle) { // sanity check servo function if (function != SRV_Channel::k_throttle && function != SRV_Channel::k_throttleLeft && function != SRV_Channel::k_throttleRight) { return; } // constrain output throttle = constrain_float(throttle, -100.0f, 100.0f); // set relay if necessary if (_pwm_type == PWM_TYPE_BRUSHED) { switch (function) { case SRV_Channel::k_throttle: case SRV_Channel::k_throttleLeft: _relayEvents.do_set_relay(0, is_negative(throttle)); break; case SRV_Channel::k_throttleRight: _relayEvents.do_set_relay(1, is_negative(throttle)); break; default: // do nothing break; } throttle = fabsf(throttle); } // output to servo channel switch (function) { case SRV_Channel::k_throttle: SRV_Channels::set_output_scaled(function, throttle); break; case SRV_Channel::k_throttleLeft: case SRV_Channel::k_throttleRight: SRV_Channels::set_output_scaled(function, throttle*10.0f); break; default: // do nothing break; } } // slew limit throttle for one iteration void AP_MotorsUGV::slew_limit_throttle(float dt) { if (_use_slew_rate && (_slew_rate > 0)) { float temp = _slew_rate * dt * 0.01f * 100.0f; // TODO : get THROTTLE MIN and THROTTLE MAX if (temp < 1.0f) { temp = 1.0f; } _throttle = constrain_int16(_throttle, _last_throttle - temp, _last_throttle + temp); } } // setup servo output void AP_MotorsUGV::setup_servo_output() { // k_steering are limited to -45;45 degree SRV_Channels::set_angle(SRV_Channel::k_steering, SERVO_MAX); // k_throttle are in power percent so -100 ... 100 SRV_Channels::set_angle(SRV_Channel::k_throttle, 100); // skid steering left/right throttle as -1000 to 1000 values SRV_Channels::set_angle(SRV_Channel::k_throttleLeft, 1000); SRV_Channels::set_angle(SRV_Channel::k_throttleRight, 1000); } // setup pwm output type void AP_MotorsUGV::setup_pwm_type() { switch (_pwm_type) { case PWM_TYPE_ONESHOT: case PWM_TYPE_ONESHOT125: // tell HAL to do immediate output hal.rcout->set_output_mode(AP_HAL::RCOutput::MODE_PWM_ONESHOT); break; case PWM_TYPE_BRUSHED: case PWM_TYPE_BRUSHEDBIPOLAR: hal.rcout->set_output_mode(AP_HAL::RCOutput::MODE_PWM_BRUSHED); /* * Group 0: channels 0 1 * Group 1: channels 4 5 6 7 * Group 2: channels 2 3 */ // TODO : See if we can seperate frequency between groups hal.rcout->set_freq((1UL << 0), static_cast(_pwm_freq * 1000)); // Steering group hal.rcout->set_freq((1UL << 2), static_cast(_pwm_freq * 1000)); // Throttle group break; default: // do nothing break; } } // setup output in case of main CPU failure void AP_MotorsUGV::setup_safety_output() { if (_pwm_type == PWM_TYPE_BRUSHED) { // set trim to min to set duty cycle range (0 - 100%) to servo range SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttleLeft); SRV_Channels::set_trim_to_min_for(SRV_Channel::k_throttleRight); } if (_disarm_disable_pwm) { // throttle channels output zero pwm (i.e. no signal) SRV_Channels::set_safety_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } else { // throttle channels output trim values (because rovers will go backwards if set to MIN) SRV_Channels::set_safety_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); SRV_Channels::set_safety_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_TRIM); } // stop sending pwm if main CPU fails SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttle, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttleLeft, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); SRV_Channels::set_failsafe_limit(SRV_Channel::k_throttleRight, SRV_Channel::SRV_CHANNEL_LIMIT_ZERO_PWM); } // test steering or throttle output as a percentage of the total (range -100 to +100) // used in response to DO_MOTOR_TEST mavlink command bool AP_MotorsUGV::output_test_pct(motor_test_order motor_seq, float pct) { // check if the motor_seq is valid if (motor_seq > MOTOR_TEST_THROTTLE_RIGHT) { return false; } pct = constrain_float(pct, -100.0f, 100.0f); switch (motor_seq) { case MOTOR_TEST_THROTTLE: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttle)) { return false; } output_throttle(SRV_Channel::k_throttle, pct); break; } case MOTOR_TEST_STEERING: { if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) { return false; } SRV_Channels::set_output_scaled(SRV_Channel::k_steering, pct * 45.0f); break; } case MOTOR_TEST_THROTTLE_LEFT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft)) { return false; } output_throttle(SRV_Channel::k_throttleLeft, pct); break; } case MOTOR_TEST_THROTTLE_RIGHT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { return false; } output_throttle(SRV_Channel::k_throttleRight, pct); break; } default: return false; } SRV_Channels::calc_pwm(); hal.rcout->cork(); SRV_Channels::output_ch_all(); hal.rcout->push(); return true; } // test steering or throttle output using a pwm value bool AP_MotorsUGV::output_test_pwm(motor_test_order motor_seq, float pwm) { // check if the motor_seq is valid if (motor_seq > MOTOR_TEST_THROTTLE_RIGHT) { return false; } switch (motor_seq) { case MOTOR_TEST_THROTTLE: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttle)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, pwm); break; } case MOTOR_TEST_STEERING: { if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_steering, pwm); break; } case MOTOR_TEST_THROTTLE_LEFT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleLeft)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, pwm); break; } case MOTOR_TEST_THROTTLE_RIGHT: { if (!SRV_Channels::function_assigned(SRV_Channel::k_throttleRight)) { return false; } SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, pwm); break; } default: return false; } SRV_Channels::calc_pwm(); hal.rcout->cork(); SRV_Channels::output_ch_all(); hal.rcout->push(); return true; }