// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // Swift Navigation GPS driver for ArduPilot // Origin code by Niels Joubert njoubert.com // #include #include "AP_GPS_SBP.h" #include #define SBP_DEBUGGING 0 #define SBP_FAKE_3DLOCK 0 extern const AP_HAL::HAL& hal; #define SBP_MILLIS_BETWEEN_HEALTHCHECKS 1500 #define SBP_DEBUGGING 0 #if SBP_DEBUGGING # define Debug(fmt, args ...) do {hal.console->printf("%s:%d: " fmt "\n", __FUNCTION__, __LINE__, ## args); hal.scheduler->delay(1); } while(0) #else # define Debug(fmt, args ...) #endif /* only do detailed hardware logging on boards likely to have more log storage space */ #if HAL_CPU_CLASS >= HAL_CPU_CLASS_75 #define SBP_HW_LOGGING 1 #else #define SBP_HW_LOGGING 0 #endif AP_GPS_SBP::AP_GPS_SBP(AP_GPS &_gps, AP_GPS::GPS_State &_state, AP_HAL::UARTDriver *_port) : AP_GPS_Backend(_gps, _state, _port), has_updated_pos(false), has_updated_vel(false), logging_started(false), pos_msg_counter(0), vel_msg_counter(0), dops_msg_counter(0), baseline_msg_counter(0), crc_error_counter(0), last_healthcheck_millis(0) { Debug("Initializing SBP Driver"); port->begin(115200, 256, 16); port->flush(); parser_state.state = sbp_parser_state_t::WAITING; state.status = AP_GPS::NO_FIX; state.have_vertical_velocity = true; } bool AP_GPS_SBP::read(void) { //First we process all data waiting for the queue. sbp_process(); uint32_t now = hal.scheduler->millis(); uint32_t elapsed = now - last_healthcheck_millis; if (elapsed > SBP_MILLIS_BETWEEN_HEALTHCHECKS) { last_healthcheck_millis = now; #if SBP_DEBUGGING || SBP_HW_LOGGING float pos_msg_hz = pos_msg_counter / (float) elapsed * 1000.0; float vel_msg_hz = vel_msg_counter / (float) elapsed * 1000.0; float dops_msg_hz = dops_msg_counter / (float) elapsed * 1000.0; float baseline_msg_hz = baseline_msg_counter / (float) elapsed * 1000.0; float crc_error_hz = crc_error_counter / (float) elapsed * 1000.0; pos_msg_counter = 0; vel_msg_counter = 0; dops_msg_counter = 0; baseline_msg_counter = 0; crc_error_counter = 0; Debug("SBP GPS perf: CRC=(%.2fHz) Pos=(%.2fHz) Vel=(%.2fHz) Dops=(%.2fHz) Baseline=(%.2fHz)\n", crc_error_hz, pos_msg_hz, vel_msg_hz, dops_msg_hz, baseline_msg_hz); #if SBP_HW_LOGGING logging_log_health(pos_msg_hz, vel_msg_hz, dops_msg_hz, baseline_msg_hz, crc_error_hz); #endif #endif } //Now we check whether we've done a full update - is all the sticky bits set? if (has_updated_pos && has_updated_vel) { state.status = AP_GPS::GPS_OK_FIX_3D; has_updated_pos = false; has_updated_vel = false; return true; } return false; } //This attempts to read all the SBP messages from the incoming port. void AP_GPS_SBP::sbp_process() { while (port->available() > 0) { uint8_t temp = port->read(); uint16_t crc; //This switch reads one character at a time, //parsing it into buffers until a full message is dispatched switch(parser_state.state) { case sbp_parser_state_t::WAITING: if (temp == SBP_PREAMBLE) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_TYPE; } break; case sbp_parser_state_t::GET_TYPE: *((uint8_t*)&(parser_state.msg_type) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_SENDER; } break; case sbp_parser_state_t::GET_SENDER: *((uint8_t*)&(parser_state.sender_id) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_LEN; } break; case sbp_parser_state_t::GET_LEN: parser_state.msg_len = temp; parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_MSG; break; case sbp_parser_state_t::GET_MSG: *((uint8_t*)&(parser_state.msg_buff) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= parser_state.msg_len) { parser_state.n_read = 0; parser_state.state = sbp_parser_state_t::GET_CRC; } break; case sbp_parser_state_t::GET_CRC: *((uint8_t*)&(parser_state.crc) + parser_state.n_read) = temp; parser_state.n_read += 1; if (parser_state.n_read >= 2) { parser_state.state = sbp_parser_state_t::WAITING; crc = crc16_ccitt((uint8_t*)&(parser_state.msg_type), 2, 0); crc = crc16_ccitt((uint8_t*)&(parser_state.sender_id), 2, crc); crc = crc16_ccitt(&(parser_state.msg_len), 1, crc); crc = crc16_ccitt(parser_state.msg_buff, parser_state.msg_len, crc); if (parser_state.crc == crc) { //OK, we have a valid message. Dispatch the appropriate function: switch(parser_state.msg_type) { case SBP_GPS_TIME_MSGTYPE: sbp_process_gpstime(parser_state.msg_buff); break; case SBP_DOPS_MSGTYPE: sbp_process_dops(parser_state.msg_buff); break; case SBP_POS_ECEF_MSGTYPE: sbp_process_pos_ecef(parser_state.msg_buff); break; case SBP_POS_LLH_MSGTYPE: sbp_process_pos_llh(parser_state.msg_buff); break; case SBP_BASELINE_ECEF_MSGTYPE: sbp_process_baseline_ecef(parser_state.msg_buff); break; case SBP_BASELINE_NED_MSGTYPE: sbp_process_baseline_ned(parser_state.msg_buff); break; case SBP_VEL_ECEF_MSGTYPE: sbp_process_vel_ecef(parser_state.msg_buff); break; case SBP_VEL_NED_MSGTYPE: sbp_process_vel_ned(parser_state.msg_buff); break; default: Debug("Unknown message received: msg_type=0x%x", parser_state.msg_type); } } else { Debug("CRC Error Occurred!\n"); crc_error_counter += 1; } } break; default: parser_state.state = sbp_parser_state_t::WAITING; break; } } //We have parsed all the waiting messages return; } void AP_GPS_SBP::sbp_process_gpstime(uint8_t* msg) { struct sbp_gps_time_t* t = (struct sbp_gps_time_t*)msg; state.time_week = t->wn; state.time_week_ms = t->tow; state.last_gps_time_ms = hal.scheduler->millis(); } void AP_GPS_SBP::sbp_process_dops(uint8_t* msg) { struct sbp_dops_t* d = (struct sbp_dops_t*) msg; state.time_week_ms = d->tow; state.last_gps_time_ms = hal.scheduler->millis(); state.hdop = d->hdop; dops_msg_counter += 1; } void AP_GPS_SBP::sbp_process_pos_ecef(uint8_t* msg) { //Ideally we'd like this data in LLH format, not ECEF } void AP_GPS_SBP::sbp_process_pos_llh(uint8_t* msg) { struct sbp_pos_llh_t* pos = (struct sbp_pos_llh_t*)msg; state.time_week_ms = pos->tow; state.last_gps_time_ms = hal.scheduler->millis(); state.location.lat = (int32_t) (pos->lat*1e7); state.location.lng = (int32_t) (pos->lon*1e7); state.location.alt = (int32_t) (pos->height*1e2); state.num_sats = pos->n_sats; pos_msg_counter += 1; has_updated_pos = true; } void AP_GPS_SBP::sbp_process_baseline_ecef(uint8_t* msg) { struct sbp_baseline_ecef_t* b = (struct sbp_baseline_ecef_t*)msg; baseline_msg_counter += 1; #if SBP_HW_LOGGING logging_log_baseline(b); #endif } void AP_GPS_SBP::sbp_process_baseline_ned(uint8_t* msg) { //Ideally we'd like this data in ECEF format, not NED } void AP_GPS_SBP::sbp_process_vel_ecef(uint8_t* msg) { //Ideally we'd like this data in NED format, not ECEF } void AP_GPS_SBP::sbp_process_vel_ned(uint8_t* msg) { struct sbp_vel_ned_t* vel = (struct sbp_vel_ned_t*)msg; state.time_week_ms = vel->tow; state.last_gps_time_ms = hal.scheduler->millis(); state.velocity[0] = (float)vel->n / 1000.0; state.velocity[1] = (float)vel->e / 1000.0; state.velocity[2] = (float)vel->d / 1000.0; state.num_sats = vel->n_sats; float ground_vector_sq = state.velocity[0]*state.velocity[0] + state.velocity[1]*state.velocity[1]; state.ground_speed = safe_sqrt(ground_vector_sq); state.ground_course_cd = (int32_t) 100*ToDeg(atan2f(state.velocity[1], state.velocity[0])); if (state.ground_course_cd < 0) { state.ground_course_cd += 36000; } vel_msg_counter += 1; has_updated_vel = true; } bool AP_GPS_SBP::_detect(struct SBP_detect_state &state, uint8_t data) { uint16_t crc; //This switch reads one character at a time, //if we find something that looks like our preamble //we'll try to read the full message length, calculating the CRC. //If the CRC matches, we have a SBP GPS! switch(state.state) { case SBP_detect_state::WAITING: if (data == SBP_PREAMBLE) { state.n_read = 0; state.crc_so_far = 0; state.state = SBP_detect_state::GET_TYPE; } break; case SBP_detect_state::GET_TYPE: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= 2) { state.n_read = 0; state.state = SBP_detect_state::GET_SENDER; } break; case SBP_detect_state::GET_SENDER: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= 2) { state.n_read = 0; state.state = SBP_detect_state::GET_LEN; } break; case SBP_detect_state::GET_LEN: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.msg_len = data; state.n_read = 0; state.state = SBP_detect_state::GET_MSG; break; case SBP_detect_state::GET_MSG: state.crc_so_far = crc16_ccitt(&data, 1, state.crc_so_far); state.n_read += 1; if (state.n_read >= state.msg_len) { state.n_read = 0; state.state = SBP_detect_state::GET_CRC; } break; case SBP_detect_state::GET_CRC: *((uint8_t*)&(state.crc) + state.n_read) = data; state.n_read += 1; if (state.n_read >= 2) { state.state = SBP_detect_state::WAITING; return state.crc == state.crc_so_far; } break; default: state.state = SBP_detect_state::WAITING; break; } return false; } #if SBP_HW_LOGGING #define LOG_MSG_SBPHEALTH 202 #define LOG_MSG_SBPBASELINE 203 struct PACKED log_SbpHealth { LOG_PACKET_HEADER; uint32_t timestamp; float pos_msg_hz; float vel_msg_hz; float dops_msg_hz; float baseline_msg_hz; float crc_error_hz; }; struct PACKED log_SbpBaseline { LOG_PACKET_HEADER; uint32_t timestamp; uint32_t tow; int32_t baseline_x; int32_t baseline_y; int32_t baseline_z; uint16_t baseline_accuracy; uint8_t num_sats; uint8_t flags; }; static const struct LogStructure sbp_log_structures[] PROGMEM = { { LOG_MSG_SBPHEALTH, sizeof(log_SbpHealth), "SBPH", "Ifffff", "TimeMS,PosHz,VelHz,DopsHz,BaseHz,CrcHz" }, { LOG_MSG_SBPBASELINE, sizeof(log_SbpBaseline), "SBPB", "IIiiiHBB", "TimeMS,tow,bx,by,bz,bacc,num_sats,flags" } }; void AP_GPS_SBP::logging_write_headers(void) { if (!logging_started) { logging_started = true; gps._DataFlash->AddLogFormats(sbp_log_structures, sizeof(sbp_log_structures) / sizeof(LogStructure)); } } void AP_GPS_SBP::logging_log_health(float pos_msg_hz, float vel_msg_hz, float dops_msg_hz, float baseline_msg_hz, float crc_error_hz) { if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { return; } logging_write_headers(); struct log_SbpHealth pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPHEALTH), timestamp : hal.scheduler->millis(), pos_msg_hz : pos_msg_hz, vel_msg_hz : vel_msg_hz, dops_msg_hz : dops_msg_hz, baseline_msg_hz : baseline_msg_hz, crc_error_hz : crc_error_hz }; gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); } void AP_GPS_SBP::logging_log_baseline(struct sbp_baseline_ecef_t* b) { if (gps._DataFlash == NULL || !gps._DataFlash->logging_started()) { return; } logging_write_headers(); struct log_SbpBaseline pkt = { LOG_PACKET_HEADER_INIT(LOG_MSG_SBPBASELINE), timestamp : hal.scheduler->millis(), tow : b->tow, baseline_x : b->x, baseline_y : b->y, baseline_z : b->z, baseline_accuracy : b->accuracy, num_sats : b->n_sats, flags : b->flags }; gps._DataFlash->WriteBlock(&pkt, sizeof(pkt)); } #endif // SBP_HW_LOGGING