#include #if HAL_WITH_UAVCAN #include #include #include "AP_BattMonitor.h" #include "AP_BattMonitor_UAVCAN.h" #include #include extern const AP_HAL::HAL& hal; #define debug_bm_uavcan(level, fmt, args...) do { if ((level) <= AP_BoardConfig_CAN::get_can_debug()) { printf(fmt, ##args); }} while (0) /// Constructor AP_BattMonitor_UAVCAN::AP_BattMonitor_UAVCAN(AP_BattMonitor &mon, AP_BattMonitor::BattMonitor_State &mon_state, BattMonitor_UAVCAN_Type type, AP_BattMonitor_Params ¶ms) : AP_BattMonitor_Backend(mon, mon_state, params), _type(type) { // starts with not healthy _state.healthy = false; } void AP_BattMonitor_UAVCAN::init() { if (AP_BoardConfig_CAN::get_can_num_ifaces() != 0) { for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++) { if (hal.can_mgr[i] != nullptr) { AP_UAVCAN *uavcan = hal.can_mgr[i]->get_UAVCAN(); if (uavcan != nullptr) { switch (_type) { case UAVCAN_BATTERY_INFO: if (uavcan->register_BM_bi_listener_to_id(this, _params._serial_number)) { debug_bm_uavcan(2, "UAVCAN BattMonitor BatteryInfo registered id: %d\n\r", _params._serial_number); } break; } } } } } } // read - read the voltage and current void AP_BattMonitor_UAVCAN::read() { uint32_t tnow = AP_HAL::micros(); // timeout after 5 seconds if ((tnow - _state.last_time_micros) > AP_BATTMONITOR_UAVCAN_TIMEOUT_MICROS) { _state.healthy = false; } } void AP_BattMonitor_UAVCAN::handle_bi_msg(float voltage, float current, float temperature) { _state.temperature = temperature; _state.voltage = voltage; _state.current_amps = current; uint32_t tnow = AP_HAL::micros(); uint32_t dt = tnow - _state.last_time_micros; // update total current drawn since startup if (_state.last_time_micros != 0 && dt < 2000000) { // .0002778 is 1/3600 (conversion to hours) float mah = (float) ((double) _state.current_amps * (double) dt * (double) 0.0000002778f); _state.current_total_mah += mah; _state.consumed_wh += 0.001f * mah * _state.voltage; } // record time _state.last_time_micros = tnow; _state.healthy = true; } #endif