''' MAVLink protocol implementation (auto-generated by mavgen.py) Generated from: ardupilotmega.xml,common.xml Note: this file has been auto-generated. DO NOT EDIT ''' import struct, array, mavutil, time WIRE_PROTOCOL_VERSION = "1.0" class MAVLink_header(object): '''MAVLink message header''' def __init__(self, msgId, mlen=0, seq=0, srcSystem=0, srcComponent=0): self.mlen = mlen self.seq = seq self.srcSystem = srcSystem self.srcComponent = srcComponent self.msgId = msgId def pack(self): return struct.pack('BBBBBB', 254, self.mlen, self.seq, self.srcSystem, self.srcComponent, self.msgId) class MAVLink_message(object): '''base MAVLink message class''' def __init__(self, msgId, name): self._header = MAVLink_header(msgId) self._payload = None self._msgbuf = None self._crc = None self._fieldnames = [] self._type = name def get_msgbuf(self): return self._msgbuf def get_header(self): return self._header def get_payload(self): return self._payload def get_crc(self): return self._crc def get_fieldnames(self): return self._fieldnames def get_type(self): return self._type def get_msgId(self): return self._header.msgId def get_srcSystem(self): return self._header.srcSystem def get_srcComponent(self): return self._header.srcComponent def get_seq(self): return self._header.seq def __str__(self): ret = '%s {' % self._type for a in self._fieldnames: v = getattr(self, a) ret += '%s : %s, ' % (a, v) ret = ret[0:-2] + '}' return ret def pack(self, mav, crc_extra, payload): self._payload = payload self._header = MAVLink_header(self._header.msgId, len(payload), mav.seq, mav.srcSystem, mav.srcComponent) self._msgbuf = self._header.pack() + payload crc = mavutil.x25crc(self._msgbuf[1:]) if True: # using CRC extra crc.accumulate(chr(crc_extra)) self._crc = crc.crc self._msgbuf += struct.pack(' MAV. Also used to return a point from MAV -> GCS ''' def __init__(self, target_system, target_component, idx, count, lat, lng): MAVLink_message.__init__(self, MAVLINK_MSG_ID_FENCE_POINT, 'FENCE_POINT') self._fieldnames = ['target_system', 'target_component', 'idx', 'count', 'lat', 'lng'] self.target_system = target_system self.target_component = target_component self.idx = idx self.count = count self.lat = lat self.lng = lng def pack(self, mav): return MAVLink_message.pack(self, mav, 78, struct.pack(' value[float]. This allows to send a parameter to any other component (such as the GCS) without the need of previous knowledge of possible parameter names. Thus the same GCS can store different parameters for different autopilots. See also http://qgroundcontrol.org/parameter_interface for a full documentation of QGroundControl and IMU code. ''' def __init__(self, target_system, target_component, param_id, param_index): MAVLink_message.__init__(self, MAVLINK_MSG_ID_PARAM_REQUEST_READ, 'PARAM_REQUEST_READ') self._fieldnames = ['target_system', 'target_component', 'param_id', 'param_index'] self.target_system = target_system self.target_component = target_component self.param_id = param_id self.param_index = param_index def pack(self, mav): return MAVLink_message.pack(self, mav, 214, struct.pack('= 1 and self.buf[0] != 254: magic = self.buf[0] self.buf = self.buf[1:] if self.robust_parsing: m = MAVLink_bad_data(chr(magic), "Bad prefix") if self.callback: self.callback(m, *self.callback_args, **self.callback_kwargs) self.expected_length = 6 self.total_receive_errors += 1 return m if self.have_prefix_error: return None self.have_prefix_error = True self.total_receive_errors += 1 raise MAVError("invalid MAVLink prefix '%s'" % magic) self.have_prefix_error = False if len(self.buf) >= 2: (magic, self.expected_length) = struct.unpack('BB', self.buf[0:2]) self.expected_length += 8 if self.expected_length >= 8 and len(self.buf) >= self.expected_length: mbuf = self.buf[0:self.expected_length] self.buf = self.buf[self.expected_length:] self.expected_length = 6 if self.robust_parsing: try: m = self.decode(mbuf) self.total_packets_received += 1 except MAVError as reason: m = MAVLink_bad_data(mbuf, reason.message) self.total_receive_errors += 1 else: m = self.decode(mbuf) self.total_packets_received += 1 if self.callback: self.callback(m, *self.callback_args, **self.callback_kwargs) return m return None def parse_buffer(self, s): '''input some data bytes, possibly returning a list of new messages''' m = self.parse_char(s) if m is None: return None ret = [m] while True: m = self.parse_char("") if m is None: return ret ret.append(m) return ret def decode(self, msgbuf): '''decode a buffer as a MAVLink message''' # decode the header try: magic, mlen, seq, srcSystem, srcComponent, msgId = struct.unpack('cBBBBB', msgbuf[:6]) except struct.error as emsg: raise MAVError('Unable to unpack MAVLink header: %s' % emsg) if ord(magic) != 254: raise MAVError("invalid MAVLink prefix '%s'" % magic) if mlen != len(msgbuf)-8: raise MAVError('invalid MAVLink message length. Got %u expected %u, msgId=%u' % (len(msgbuf)-8, mlen, msgId)) if not msgId in mavlink_map: raise MAVError('unknown MAVLink message ID %u' % msgId) # decode the payload (fmt, type, order_map, crc_extra) = mavlink_map[msgId] # decode the checksum try: crc, = struct.unpack(' MAV. Also used to return a point from MAV -> GCS target_system : System ID (uint8_t) target_component : Component ID (uint8_t) idx : point index (first point is 1, 0 is for return point) (uint8_t) count : total number of points (for sanity checking) (uint8_t) lat : Latitude of point (float) lng : Longitude of point (float) ''' msg = MAVLink_fence_point_message(target_system, target_component, idx, count, lat, lng) msg.pack(self) return msg def fence_point_send(self, target_system, target_component, idx, count, lat, lng): ''' A fence point. Used to set a point when from GCS -> MAV. Also used to return a point from MAV -> GCS target_system : System ID (uint8_t) target_component : Component ID (uint8_t) idx : point index (first point is 1, 0 is for return point) (uint8_t) count : total number of points (for sanity checking) (uint8_t) lat : Latitude of point (float) lng : Longitude of point (float) ''' return self.send(self.fence_point_encode(target_system, target_component, idx, count, lat, lng)) def fence_fetch_point_encode(self, target_system, target_component, idx): ''' Request a current fence point from MAV target_system : System ID (uint8_t) target_component : Component ID (uint8_t) idx : point index (first point is 1, 0 is for return point) (uint8_t) ''' msg = MAVLink_fence_fetch_point_message(target_system, target_component, idx) msg.pack(self) return msg def fence_fetch_point_send(self, target_system, target_component, idx): ''' Request a current fence point from MAV target_system : System ID (uint8_t) target_component : Component ID (uint8_t) idx : point index (first point is 1, 0 is for return point) (uint8_t) ''' return self.send(self.fence_fetch_point_encode(target_system, target_component, idx)) def fence_status_encode(self, breach_status, breach_count, breach_type, breach_time): ''' Status of geo-fencing. Sent in extended status stream when fencing enabled breach_status : 0 if currently inside fence, 1 if outside (uint8_t) breach_count : number of fence breaches (uint16_t) breach_type : last breach type (see FENCE_BREACH_* enum) (uint8_t) breach_time : time of last breach in milliseconds since boot (uint32_t) ''' msg = MAVLink_fence_status_message(breach_status, breach_count, breach_type, breach_time) msg.pack(self) return msg def fence_status_send(self, breach_status, breach_count, breach_type, breach_time): ''' Status of geo-fencing. Sent in extended status stream when fencing enabled breach_status : 0 if currently inside fence, 1 if outside (uint8_t) breach_count : number of fence breaches (uint16_t) breach_type : last breach type (see FENCE_BREACH_* enum) (uint8_t) breach_time : time of last breach in milliseconds since boot (uint32_t) ''' return self.send(self.fence_status_encode(breach_status, breach_count, breach_type, breach_time)) def ahrs_encode(self, omegaIx, omegaIy, omegaIz, accel_weight, renorm_val, error_rp, error_yaw): ''' Status of DCM attitude estimator omegaIx : X gyro drift estimate rad/s (float) omegaIy : Y gyro drift estimate rad/s (float) omegaIz : Z gyro drift estimate rad/s (float) accel_weight : average accel_weight (float) renorm_val : average renormalisation value (float) error_rp : average error_roll_pitch value (float) error_yaw : average error_yaw value (float) ''' msg = MAVLink_ahrs_message(omegaIx, omegaIy, omegaIz, accel_weight, renorm_val, error_rp, error_yaw) msg.pack(self) return msg def ahrs_send(self, omegaIx, omegaIy, omegaIz, accel_weight, renorm_val, error_rp, error_yaw): ''' Status of DCM attitude estimator omegaIx : X gyro drift estimate rad/s (float) omegaIy : Y gyro drift estimate rad/s (float) omegaIz : Z gyro drift estimate rad/s (float) accel_weight : average accel_weight (float) renorm_val : average renormalisation value (float) error_rp : average error_roll_pitch value (float) error_yaw : average error_yaw value (float) ''' return self.send(self.ahrs_encode(omegaIx, omegaIy, omegaIz, accel_weight, renorm_val, error_rp, error_yaw)) def simstate_encode(self, roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro): ''' Status of simulation environment, if used roll : Roll angle (rad) (float) pitch : Pitch angle (rad) (float) yaw : Yaw angle (rad) (float) xacc : X acceleration m/s/s (float) yacc : Y acceleration m/s/s (float) zacc : Z acceleration m/s/s (float) xgyro : Angular speed around X axis rad/s (float) ygyro : Angular speed around Y axis rad/s (float) zgyro : Angular speed around Z axis rad/s (float) ''' msg = MAVLink_simstate_message(roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro) msg.pack(self) return msg def simstate_send(self, roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro): ''' Status of simulation environment, if used roll : Roll angle (rad) (float) pitch : Pitch angle (rad) (float) yaw : Yaw angle (rad) (float) xacc : X acceleration m/s/s (float) yacc : Y acceleration m/s/s (float) zacc : Z acceleration m/s/s (float) xgyro : Angular speed around X axis rad/s (float) ygyro : Angular speed around Y axis rad/s (float) zgyro : Angular speed around Z axis rad/s (float) ''' return self.send(self.simstate_encode(roll, pitch, yaw, xacc, yacc, zacc, xgyro, ygyro, zgyro)) def hwstatus_encode(self, Vcc, I2Cerr): ''' Status of key hardware Vcc : board voltage (mV) (uint16_t) I2Cerr : I2C error count (uint8_t) ''' msg = MAVLink_hwstatus_message(Vcc, I2Cerr) msg.pack(self) return msg def hwstatus_send(self, Vcc, I2Cerr): ''' Status of key hardware Vcc : board voltage (mV) (uint16_t) I2Cerr : I2C error count (uint8_t) ''' return self.send(self.hwstatus_encode(Vcc, I2Cerr)) def radio_encode(self, rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed): ''' Status generated by radio rssi : local signal strength (uint8_t) remrssi : remote signal strength (uint8_t) txbuf : how full the tx buffer is as a percentage (uint8_t) noise : background noise level (uint8_t) remnoise : remote background noise level (uint8_t) rxerrors : receive errors (uint16_t) fixed : count of error corrected packets (uint16_t) ''' msg = MAVLink_radio_message(rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed) msg.pack(self) return msg def radio_send(self, rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed): ''' Status generated by radio rssi : local signal strength (uint8_t) remrssi : remote signal strength (uint8_t) txbuf : how full the tx buffer is as a percentage (uint8_t) noise : background noise level (uint8_t) remnoise : remote background noise level (uint8_t) rxerrors : receive errors (uint16_t) fixed : count of error corrected packets (uint16_t) ''' return self.send(self.radio_encode(rssi, remrssi, txbuf, noise, remnoise, rxerrors, fixed)) def heartbeat_encode(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version=3): ''' The heartbeat message shows that a system is present and responding. The type of the MAV and Autopilot hardware allow the receiving system to treat further messages from this system appropriate (e.g. by laying out the user interface based on the autopilot). type : Type of the MAV (quadrotor, helicopter, etc., up to 15 types, defined in MAV_TYPE ENUM) (uint8_t) autopilot : Autopilot type / class. defined in MAV_AUTOPILOT ENUM (uint8_t) base_mode : System mode bitfield, see MAV_MODE_FLAGS ENUM in mavlink/include/mavlink_types.h (uint8_t) custom_mode : A bitfield for use for autopilot-specific flags. (uint32_t) system_status : System status flag, see MAV_STATE ENUM (uint8_t) mavlink_version : MAVLink version, not writable by user, gets added by protocol because of magic data type: uint8_t_mavlink_version (uint8_t) ''' msg = MAVLink_heartbeat_message(type, autopilot, base_mode, custom_mode, system_status, mavlink_version) msg.pack(self) return msg def heartbeat_send(self, type, autopilot, base_mode, custom_mode, system_status, mavlink_version=3): ''' The heartbeat message shows that a system is present and responding. The type of the MAV and Autopilot hardware allow the receiving system to treat further messages from this system appropriate (e.g. by laying out the user interface based on the autopilot). type : Type of the MAV (quadrotor, helicopter, etc., up to 15 types, defined in MAV_TYPE ENUM) (uint8_t) autopilot : Autopilot type / class. defined in MAV_AUTOPILOT ENUM (uint8_t) base_mode : System mode bitfield, see MAV_MODE_FLAGS ENUM in mavlink/include/mavlink_types.h (uint8_t) custom_mode : A bitfield for use for autopilot-specific flags. (uint32_t) system_status : System status flag, see MAV_STATE ENUM (uint8_t) mavlink_version : MAVLink version, not writable by user, gets added by protocol because of magic data type: uint8_t_mavlink_version (uint8_t) ''' return self.send(self.heartbeat_encode(type, autopilot, base_mode, custom_mode, system_status, mavlink_version)) def sys_status_encode(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4): ''' The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows wether the system is currently active or not and if an emergency occured. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occured it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout. onboard_control_sensors_present : Bitmask showing which onboard controllers and sensors are present. Value of 0: not present. Value of 1: present. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) onboard_control_sensors_enabled : Bitmask showing which onboard controllers and sensors are enabled: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) onboard_control_sensors_health : Bitmask showing which onboard controllers and sensors are operational or have an error: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) load : Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000 (uint16_t) voltage_battery : Battery voltage, in millivolts (1 = 1 millivolt) (uint16_t) current_battery : Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current (int16_t) battery_remaining : Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery (int8_t) drop_rate_comm : Communication drops in percent, (0%: 0, 100%: 10'000), (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t) errors_comm : Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t) errors_count1 : Autopilot-specific errors (uint16_t) errors_count2 : Autopilot-specific errors (uint16_t) errors_count3 : Autopilot-specific errors (uint16_t) errors_count4 : Autopilot-specific errors (uint16_t) ''' msg = MAVLink_sys_status_message(onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4) msg.pack(self) return msg def sys_status_send(self, onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4): ''' The general system state. If the system is following the MAVLink standard, the system state is mainly defined by three orthogonal states/modes: The system mode, which is either LOCKED (motors shut down and locked), MANUAL (system under RC control), GUIDED (system with autonomous position control, position setpoint controlled manually) or AUTO (system guided by path/waypoint planner). The NAV_MODE defined the current flight state: LIFTOFF (often an open-loop maneuver), LANDING, WAYPOINTS or VECTOR. This represents the internal navigation state machine. The system status shows wether the system is currently active or not and if an emergency occured. During the CRITICAL and EMERGENCY states the MAV is still considered to be active, but should start emergency procedures autonomously. After a failure occured it should first move from active to critical to allow manual intervention and then move to emergency after a certain timeout. onboard_control_sensors_present : Bitmask showing which onboard controllers and sensors are present. Value of 0: not present. Value of 1: present. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) onboard_control_sensors_enabled : Bitmask showing which onboard controllers and sensors are enabled: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) onboard_control_sensors_health : Bitmask showing which onboard controllers and sensors are operational or have an error: Value of 0: not enabled. Value of 1: enabled. Indices: 0: 3D gyro, 1: 3D acc, 2: 3D mag, 3: absolute pressure, 4: differential pressure, 5: GPS, 6: optical flow, 7: computer vision position, 8: laser based position, 9: external ground-truth (Vicon or Leica). Controllers: 10: 3D angular rate control 11: attitude stabilization, 12: yaw position, 13: z/altitude control, 14: x/y position control, 15: motor outputs / control (uint32_t) load : Maximum usage in percent of the mainloop time, (0%: 0, 100%: 1000) should be always below 1000 (uint16_t) voltage_battery : Battery voltage, in millivolts (1 = 1 millivolt) (uint16_t) current_battery : Battery current, in 10*milliamperes (1 = 10 milliampere), -1: autopilot does not measure the current (int16_t) battery_remaining : Remaining battery energy: (0%: 0, 100%: 100), -1: autopilot estimate the remaining battery (int8_t) drop_rate_comm : Communication drops in percent, (0%: 0, 100%: 10'000), (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t) errors_comm : Communication errors (UART, I2C, SPI, CAN), dropped packets on all links (packets that were corrupted on reception on the MAV) (uint16_t) errors_count1 : Autopilot-specific errors (uint16_t) errors_count2 : Autopilot-specific errors (uint16_t) errors_count3 : Autopilot-specific errors (uint16_t) errors_count4 : Autopilot-specific errors (uint16_t) ''' return self.send(self.sys_status_encode(onboard_control_sensors_present, onboard_control_sensors_enabled, onboard_control_sensors_health, load, voltage_battery, current_battery, battery_remaining, drop_rate_comm, errors_comm, errors_count1, errors_count2, errors_count3, errors_count4)) def system_time_encode(self, time_unix_usec, time_boot_ms): ''' The system time is the time of the master clock, typically the computer clock of the main onboard computer. time_unix_usec : Timestamp of the master clock in microseconds since UNIX epoch. (uint64_t) time_boot_ms : Timestamp of the component clock since boot time in milliseconds. (uint32_t) ''' msg = MAVLink_system_time_message(time_unix_usec, time_boot_ms) msg.pack(self) return msg def system_time_send(self, time_unix_usec, time_boot_ms): ''' The system time is the time of the master clock, typically the computer clock of the main onboard computer. time_unix_usec : Timestamp of the master clock in microseconds since UNIX epoch. (uint64_t) time_boot_ms : Timestamp of the component clock since boot time in milliseconds. (uint32_t) ''' return self.send(self.system_time_encode(time_unix_usec, time_boot_ms)) def ping_encode(self, time_usec, seq, target_system, target_component): ''' A ping message either requesting or responding to a ping. This allows to measure the system latencies, including serial port, radio modem and UDP connections. time_usec : Unix timestamp in microseconds (uint64_t) seq : PING sequence (uint32_t) target_system : 0: request ping from all receiving systems, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t) target_component : 0: request ping from all receiving components, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t) ''' msg = MAVLink_ping_message(time_usec, seq, target_system, target_component) msg.pack(self) return msg def ping_send(self, time_usec, seq, target_system, target_component): ''' A ping message either requesting or responding to a ping. This allows to measure the system latencies, including serial port, radio modem and UDP connections. time_usec : Unix timestamp in microseconds (uint64_t) seq : PING sequence (uint32_t) target_system : 0: request ping from all receiving systems, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t) target_component : 0: request ping from all receiving components, if greater than 0: message is a ping response and number is the system id of the requesting system (uint8_t) ''' return self.send(self.ping_encode(time_usec, seq, target_system, target_component)) def change_operator_control_encode(self, target_system, control_request, version, passkey): ''' Request to control this MAV target_system : System the GCS requests control for (uint8_t) control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t) version : 0: key as plaintext, 1-255: future, different hashing/encryption variants. The GCS should in general use the safest mode possible initially and then gradually move down the encryption level if it gets a NACK message indicating an encryption mismatch. (uint8_t) passkey : Password / Key, depending on version plaintext or encrypted. 25 or less characters, NULL terminated. The characters may involve A-Z, a-z, 0-9, and "!?,.-" (char) ''' msg = MAVLink_change_operator_control_message(target_system, control_request, version, passkey) msg.pack(self) return msg def change_operator_control_send(self, target_system, control_request, version, passkey): ''' Request to control this MAV target_system : System the GCS requests control for (uint8_t) control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t) version : 0: key as plaintext, 1-255: future, different hashing/encryption variants. The GCS should in general use the safest mode possible initially and then gradually move down the encryption level if it gets a NACK message indicating an encryption mismatch. (uint8_t) passkey : Password / Key, depending on version plaintext or encrypted. 25 or less characters, NULL terminated. The characters may involve A-Z, a-z, 0-9, and "!?,.-" (char) ''' return self.send(self.change_operator_control_encode(target_system, control_request, version, passkey)) def change_operator_control_ack_encode(self, gcs_system_id, control_request, ack): ''' Accept / deny control of this MAV gcs_system_id : ID of the GCS this message (uint8_t) control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t) ack : 0: ACK, 1: NACK: Wrong passkey, 2: NACK: Unsupported passkey encryption method, 3: NACK: Already under control (uint8_t) ''' msg = MAVLink_change_operator_control_ack_message(gcs_system_id, control_request, ack) msg.pack(self) return msg def change_operator_control_ack_send(self, gcs_system_id, control_request, ack): ''' Accept / deny control of this MAV gcs_system_id : ID of the GCS this message (uint8_t) control_request : 0: request control of this MAV, 1: Release control of this MAV (uint8_t) ack : 0: ACK, 1: NACK: Wrong passkey, 2: NACK: Unsupported passkey encryption method, 3: NACK: Already under control (uint8_t) ''' return self.send(self.change_operator_control_ack_encode(gcs_system_id, control_request, ack)) def auth_key_encode(self, key): ''' Emit an encrypted signature / key identifying this system. PLEASE NOTE: This protocol has been kept simple, so transmitting the key requires an encrypted channel for true safety. key : key (char) ''' msg = MAVLink_auth_key_message(key) msg.pack(self) return msg def auth_key_send(self, key): ''' Emit an encrypted signature / key identifying this system. PLEASE NOTE: This protocol has been kept simple, so transmitting the key requires an encrypted channel for true safety. key : key (char) ''' return self.send(self.auth_key_encode(key)) def set_mode_encode(self, target_system, base_mode, custom_mode): ''' Set the system mode, as defined by enum MAV_MODE. There is no target component id as the mode is by definition for the overall aircraft, not only for one component. target_system : The system setting the mode (uint8_t) base_mode : The new base mode (uint8_t) custom_mode : The new autopilot-specific mode. This field can be ignored by an autopilot. (uint32_t) ''' msg = MAVLink_set_mode_message(target_system, base_mode, custom_mode) msg.pack(self) return msg def set_mode_send(self, target_system, base_mode, custom_mode): ''' Set the system mode, as defined by enum MAV_MODE. There is no target component id as the mode is by definition for the overall aircraft, not only for one component. target_system : The system setting the mode (uint8_t) base_mode : The new base mode (uint8_t) custom_mode : The new autopilot-specific mode. This field can be ignored by an autopilot. (uint32_t) ''' return self.send(self.set_mode_encode(target_system, base_mode, custom_mode)) def param_request_read_encode(self, target_system, target_component, param_id, param_index): ''' Request to read the onboard parameter with the param_id string id. Onboard parameters are stored as key[const char*] -> value[float]. This allows to send a parameter to any other component (such as the GCS) without the need of previous knowledge of possible parameter names. Thus the same GCS can store different parameters for different autopilots. See also http://qgroundcontrol.org/parameter_interface for a full documentation of QGroundControl and IMU code. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) param_id : Onboard parameter id (char) param_index : Parameter index. Send -1 to use the param ID field as identifier (int16_t) ''' msg = MAVLink_param_request_read_message(target_system, target_component, param_id, param_index) msg.pack(self) return msg def param_request_read_send(self, target_system, target_component, param_id, param_index): ''' Request to read the onboard parameter with the param_id string id. Onboard parameters are stored as key[const char*] -> value[float]. This allows to send a parameter to any other component (such as the GCS) without the need of previous knowledge of possible parameter names. Thus the same GCS can store different parameters for different autopilots. See also http://qgroundcontrol.org/parameter_interface for a full documentation of QGroundControl and IMU code. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) param_id : Onboard parameter id (char) param_index : Parameter index. Send -1 to use the param ID field as identifier (int16_t) ''' return self.send(self.param_request_read_encode(target_system, target_component, param_id, param_index)) def param_request_list_encode(self, target_system, target_component): ''' Request all parameters of this component. After his request, all parameters are emitted. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' msg = MAVLink_param_request_list_message(target_system, target_component) msg.pack(self) return msg def param_request_list_send(self, target_system, target_component): ''' Request all parameters of this component. After his request, all parameters are emitted. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' return self.send(self.param_request_list_encode(target_system, target_component)) def param_value_encode(self, param_id, param_value, param_type, param_count, param_index): ''' Emit the value of a onboard parameter. The inclusion of param_count and param_index in the message allows the recipient to keep track of received parameters and allows him to re-request missing parameters after a loss or timeout. param_id : Onboard parameter id (char) param_value : Onboard parameter value (float) param_type : Onboard parameter type: see MAV_VAR enum (uint8_t) param_count : Total number of onboard parameters (uint16_t) param_index : Index of this onboard parameter (uint16_t) ''' msg = MAVLink_param_value_message(param_id, param_value, param_type, param_count, param_index) msg.pack(self) return msg def param_value_send(self, param_id, param_value, param_type, param_count, param_index): ''' Emit the value of a onboard parameter. The inclusion of param_count and param_index in the message allows the recipient to keep track of received parameters and allows him to re-request missing parameters after a loss or timeout. param_id : Onboard parameter id (char) param_value : Onboard parameter value (float) param_type : Onboard parameter type: see MAV_VAR enum (uint8_t) param_count : Total number of onboard parameters (uint16_t) param_index : Index of this onboard parameter (uint16_t) ''' return self.send(self.param_value_encode(param_id, param_value, param_type, param_count, param_index)) def param_set_encode(self, target_system, target_component, param_id, param_value, param_type): ''' Set a parameter value TEMPORARILY to RAM. It will be reset to default on system reboot. Send the ACTION MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM contents to EEPROM. IMPORTANT: The receiving component should acknowledge the new parameter value by sending a param_value message to all communication partners. This will also ensure that multiple GCS all have an up-to-date list of all parameters. If the sending GCS did not receive a PARAM_VALUE message within its timeout time, it should re-send the PARAM_SET message. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) param_id : Onboard parameter id (char) param_value : Onboard parameter value (float) param_type : Onboard parameter type: see MAV_VAR enum (uint8_t) ''' msg = MAVLink_param_set_message(target_system, target_component, param_id, param_value, param_type) msg.pack(self) return msg def param_set_send(self, target_system, target_component, param_id, param_value, param_type): ''' Set a parameter value TEMPORARILY to RAM. It will be reset to default on system reboot. Send the ACTION MAV_ACTION_STORAGE_WRITE to PERMANENTLY write the RAM contents to EEPROM. IMPORTANT: The receiving component should acknowledge the new parameter value by sending a param_value message to all communication partners. This will also ensure that multiple GCS all have an up-to-date list of all parameters. If the sending GCS did not receive a PARAM_VALUE message within its timeout time, it should re-send the PARAM_SET message. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) param_id : Onboard parameter id (char) param_value : Onboard parameter value (float) param_type : Onboard parameter type: see MAV_VAR enum (uint8_t) ''' return self.send(self.param_set_encode(target_system, target_component, param_id, param_value, param_type)) def gps_raw_int_encode(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible): ''' The global position, as returned by the Global Positioning System (GPS). This is NOT the global position estimate of the sytem, but rather a RAW sensor value. See message GLOBAL_POSITION for the global position estimate. Coordinate frame is right-handed, Z-axis up (GPS frame). time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix. (uint8_t) lat : Latitude in 1E7 degrees (int32_t) lon : Longitude in 1E7 degrees (int32_t) alt : Altitude in 1E3 meters (millimeters) above MSL (int32_t) eph : GPS HDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t) epv : GPS VDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t) vel : GPS ground speed (m/s * 100). If unknown, set to: 65535 (uint16_t) cog : Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t) satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t) ''' msg = MAVLink_gps_raw_int_message(time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible) msg.pack(self) return msg def gps_raw_int_send(self, time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible): ''' The global position, as returned by the Global Positioning System (GPS). This is NOT the global position estimate of the sytem, but rather a RAW sensor value. See message GLOBAL_POSITION for the global position estimate. Coordinate frame is right-handed, Z-axis up (GPS frame). time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix. (uint8_t) lat : Latitude in 1E7 degrees (int32_t) lon : Longitude in 1E7 degrees (int32_t) alt : Altitude in 1E3 meters (millimeters) above MSL (int32_t) eph : GPS HDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t) epv : GPS VDOP horizontal dilution of position in cm (m*100). If unknown, set to: 65535 (uint16_t) vel : GPS ground speed (m/s * 100). If unknown, set to: 65535 (uint16_t) cog : Course over ground (NOT heading, but direction of movement) in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t) satellites_visible : Number of satellites visible. If unknown, set to 255 (uint8_t) ''' return self.send(self.gps_raw_int_encode(time_usec, fix_type, lat, lon, alt, eph, epv, vel, cog, satellites_visible)) def gps_status_encode(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr): ''' The positioning status, as reported by GPS. This message is intended to display status information about each satellite visible to the receiver. See message GLOBAL_POSITION for the global position estimate. This message can contain information for up to 20 satellites. satellites_visible : Number of satellites visible (uint8_t) satellite_prn : Global satellite ID (uint8_t) satellite_used : 0: Satellite not used, 1: used for localization (uint8_t) satellite_elevation : Elevation (0: right on top of receiver, 90: on the horizon) of satellite (uint8_t) satellite_azimuth : Direction of satellite, 0: 0 deg, 255: 360 deg. (uint8_t) satellite_snr : Signal to noise ratio of satellite (uint8_t) ''' msg = MAVLink_gps_status_message(satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr) msg.pack(self) return msg def gps_status_send(self, satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr): ''' The positioning status, as reported by GPS. This message is intended to display status information about each satellite visible to the receiver. See message GLOBAL_POSITION for the global position estimate. This message can contain information for up to 20 satellites. satellites_visible : Number of satellites visible (uint8_t) satellite_prn : Global satellite ID (uint8_t) satellite_used : 0: Satellite not used, 1: used for localization (uint8_t) satellite_elevation : Elevation (0: right on top of receiver, 90: on the horizon) of satellite (uint8_t) satellite_azimuth : Direction of satellite, 0: 0 deg, 255: 360 deg. (uint8_t) satellite_snr : Signal to noise ratio of satellite (uint8_t) ''' return self.send(self.gps_status_encode(satellites_visible, satellite_prn, satellite_used, satellite_elevation, satellite_azimuth, satellite_snr)) def scaled_imu_encode(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag): ''' The RAW IMU readings for the usual 9DOF sensor setup. This message should contain the scaled values to the described units time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) xacc : X acceleration (mg) (int16_t) yacc : Y acceleration (mg) (int16_t) zacc : Z acceleration (mg) (int16_t) xgyro : Angular speed around X axis (millirad /sec) (int16_t) ygyro : Angular speed around Y axis (millirad /sec) (int16_t) zgyro : Angular speed around Z axis (millirad /sec) (int16_t) xmag : X Magnetic field (milli tesla) (int16_t) ymag : Y Magnetic field (milli tesla) (int16_t) zmag : Z Magnetic field (milli tesla) (int16_t) ''' msg = MAVLink_scaled_imu_message(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag) msg.pack(self) return msg def scaled_imu_send(self, time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag): ''' The RAW IMU readings for the usual 9DOF sensor setup. This message should contain the scaled values to the described units time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) xacc : X acceleration (mg) (int16_t) yacc : Y acceleration (mg) (int16_t) zacc : Z acceleration (mg) (int16_t) xgyro : Angular speed around X axis (millirad /sec) (int16_t) ygyro : Angular speed around Y axis (millirad /sec) (int16_t) zgyro : Angular speed around Z axis (millirad /sec) (int16_t) xmag : X Magnetic field (milli tesla) (int16_t) ymag : Y Magnetic field (milli tesla) (int16_t) zmag : Z Magnetic field (milli tesla) (int16_t) ''' return self.send(self.scaled_imu_encode(time_boot_ms, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag)) def raw_imu_encode(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag): ''' The RAW IMU readings for the usual 9DOF sensor setup. This message should always contain the true raw values without any scaling to allow data capture and system debugging. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) xacc : X acceleration (raw) (int16_t) yacc : Y acceleration (raw) (int16_t) zacc : Z acceleration (raw) (int16_t) xgyro : Angular speed around X axis (raw) (int16_t) ygyro : Angular speed around Y axis (raw) (int16_t) zgyro : Angular speed around Z axis (raw) (int16_t) xmag : X Magnetic field (raw) (int16_t) ymag : Y Magnetic field (raw) (int16_t) zmag : Z Magnetic field (raw) (int16_t) ''' msg = MAVLink_raw_imu_message(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag) msg.pack(self) return msg def raw_imu_send(self, time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag): ''' The RAW IMU readings for the usual 9DOF sensor setup. This message should always contain the true raw values without any scaling to allow data capture and system debugging. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) xacc : X acceleration (raw) (int16_t) yacc : Y acceleration (raw) (int16_t) zacc : Z acceleration (raw) (int16_t) xgyro : Angular speed around X axis (raw) (int16_t) ygyro : Angular speed around Y axis (raw) (int16_t) zgyro : Angular speed around Z axis (raw) (int16_t) xmag : X Magnetic field (raw) (int16_t) ymag : Y Magnetic field (raw) (int16_t) zmag : Z Magnetic field (raw) (int16_t) ''' return self.send(self.raw_imu_encode(time_usec, xacc, yacc, zacc, xgyro, ygyro, zgyro, xmag, ymag, zmag)) def raw_pressure_encode(self, time_usec, press_abs, press_diff1, press_diff2, temperature): ''' The RAW pressure readings for the typical setup of one absolute pressure and one differential pressure sensor. The sensor values should be the raw, UNSCALED ADC values. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) press_abs : Absolute pressure (raw) (int16_t) press_diff1 : Differential pressure 1 (raw) (int16_t) press_diff2 : Differential pressure 2 (raw) (int16_t) temperature : Raw Temperature measurement (raw) (int16_t) ''' msg = MAVLink_raw_pressure_message(time_usec, press_abs, press_diff1, press_diff2, temperature) msg.pack(self) return msg def raw_pressure_send(self, time_usec, press_abs, press_diff1, press_diff2, temperature): ''' The RAW pressure readings for the typical setup of one absolute pressure and one differential pressure sensor. The sensor values should be the raw, UNSCALED ADC values. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) press_abs : Absolute pressure (raw) (int16_t) press_diff1 : Differential pressure 1 (raw) (int16_t) press_diff2 : Differential pressure 2 (raw) (int16_t) temperature : Raw Temperature measurement (raw) (int16_t) ''' return self.send(self.raw_pressure_encode(time_usec, press_abs, press_diff1, press_diff2, temperature)) def scaled_pressure_encode(self, time_boot_ms, press_abs, press_diff, temperature): ''' The pressure readings for the typical setup of one absolute and differential pressure sensor. The units are as specified in each field. time_boot_ms : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint32_t) press_abs : Absolute pressure (hectopascal) (float) press_diff : Differential pressure 1 (hectopascal) (float) temperature : Temperature measurement (0.01 degrees celsius) (int16_t) ''' msg = MAVLink_scaled_pressure_message(time_boot_ms, press_abs, press_diff, temperature) msg.pack(self) return msg def scaled_pressure_send(self, time_boot_ms, press_abs, press_diff, temperature): ''' The pressure readings for the typical setup of one absolute and differential pressure sensor. The units are as specified in each field. time_boot_ms : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint32_t) press_abs : Absolute pressure (hectopascal) (float) press_diff : Differential pressure 1 (hectopascal) (float) temperature : Temperature measurement (0.01 degrees celsius) (int16_t) ''' return self.send(self.scaled_pressure_encode(time_boot_ms, press_abs, press_diff, temperature)) def attitude_encode(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed): ''' The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right). time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) roll : Roll angle (rad) (float) pitch : Pitch angle (rad) (float) yaw : Yaw angle (rad) (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) ''' msg = MAVLink_attitude_message(time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed) msg.pack(self) return msg def attitude_send(self, time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed): ''' The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right). time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) roll : Roll angle (rad) (float) pitch : Pitch angle (rad) (float) yaw : Yaw angle (rad) (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) ''' return self.send(self.attitude_encode(time_boot_ms, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed)) def attitude_quaternion_encode(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed): ''' The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right), expressed as quaternion. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) q1 : Quaternion component 1 (float) q2 : Quaternion component 2 (float) q3 : Quaternion component 3 (float) q4 : Quaternion component 4 (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) ''' msg = MAVLink_attitude_quaternion_message(time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed) msg.pack(self) return msg def attitude_quaternion_send(self, time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed): ''' The attitude in the aeronautical frame (right-handed, Z-down, X-front, Y-right), expressed as quaternion. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) q1 : Quaternion component 1 (float) q2 : Quaternion component 2 (float) q3 : Quaternion component 3 (float) q4 : Quaternion component 4 (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) ''' return self.send(self.attitude_quaternion_encode(time_boot_ms, q1, q2, q3, q4, rollspeed, pitchspeed, yawspeed)) def local_position_ned_encode(self, time_boot_ms, x, y, z, vx, vy, vz): ''' The filtered local position (e.g. fused computer vision and accelerometers). Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention) time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) x : X Position (float) y : Y Position (float) z : Z Position (float) vx : X Speed (float) vy : Y Speed (float) vz : Z Speed (float) ''' msg = MAVLink_local_position_ned_message(time_boot_ms, x, y, z, vx, vy, vz) msg.pack(self) return msg def local_position_ned_send(self, time_boot_ms, x, y, z, vx, vy, vz): ''' The filtered local position (e.g. fused computer vision and accelerometers). Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention) time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) x : X Position (float) y : Y Position (float) z : Z Position (float) vx : X Speed (float) vy : Y Speed (float) vz : Z Speed (float) ''' return self.send(self.local_position_ned_encode(time_boot_ms, x, y, z, vx, vy, vz)) def global_position_int_encode(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg): ''' The filtered global position (e.g. fused GPS and accelerometers). The position is in GPS-frame (right-handed, Z-up). It is designed as scaled integer message since the resolution of float is not sufficient. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) lat : Latitude, expressed as * 1E7 (int32_t) lon : Longitude, expressed as * 1E7 (int32_t) alt : Altitude in meters, expressed as * 1000 (millimeters), above MSL (int32_t) relative_alt : Altitude above ground in meters, expressed as * 1000 (millimeters) (int32_t) vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t) vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t) vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t) hdg : Compass heading in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t) ''' msg = MAVLink_global_position_int_message(time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg) msg.pack(self) return msg def global_position_int_send(self, time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg): ''' The filtered global position (e.g. fused GPS and accelerometers). The position is in GPS-frame (right-handed, Z-up). It is designed as scaled integer message since the resolution of float is not sufficient. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) lat : Latitude, expressed as * 1E7 (int32_t) lon : Longitude, expressed as * 1E7 (int32_t) alt : Altitude in meters, expressed as * 1000 (millimeters), above MSL (int32_t) relative_alt : Altitude above ground in meters, expressed as * 1000 (millimeters) (int32_t) vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t) vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t) vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t) hdg : Compass heading in degrees * 100, 0.0..359.99 degrees. If unknown, set to: 65535 (uint16_t) ''' return self.send(self.global_position_int_encode(time_boot_ms, lat, lon, alt, relative_alt, vx, vy, vz, hdg)) def rc_channels_scaled_encode(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi): ''' The scaled values of the RC channels received. (-100%) -10000, (0%) 0, (100%) 10000 time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t) chan1_scaled : RC channel 1 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan2_scaled : RC channel 2 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan3_scaled : RC channel 3 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan4_scaled : RC channel 4 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan5_scaled : RC channel 5 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan6_scaled : RC channel 6 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan7_scaled : RC channel 7 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan8_scaled : RC channel 8 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t) ''' msg = MAVLink_rc_channels_scaled_message(time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi) msg.pack(self) return msg def rc_channels_scaled_send(self, time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi): ''' The scaled values of the RC channels received. (-100%) -10000, (0%) 0, (100%) 10000 time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t) chan1_scaled : RC channel 1 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan2_scaled : RC channel 2 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan3_scaled : RC channel 3 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan4_scaled : RC channel 4 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan5_scaled : RC channel 5 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan6_scaled : RC channel 6 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan7_scaled : RC channel 7 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) chan8_scaled : RC channel 8 value scaled, (-100%) -10000, (0%) 0, (100%) 10000 (int16_t) rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t) ''' return self.send(self.rc_channels_scaled_encode(time_boot_ms, port, chan1_scaled, chan2_scaled, chan3_scaled, chan4_scaled, chan5_scaled, chan6_scaled, chan7_scaled, chan8_scaled, rssi)) def rc_channels_raw_encode(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi): ''' The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t) chan1_raw : RC channel 1 value, in microseconds (uint16_t) chan2_raw : RC channel 2 value, in microseconds (uint16_t) chan3_raw : RC channel 3 value, in microseconds (uint16_t) chan4_raw : RC channel 4 value, in microseconds (uint16_t) chan5_raw : RC channel 5 value, in microseconds (uint16_t) chan6_raw : RC channel 6 value, in microseconds (uint16_t) chan7_raw : RC channel 7 value, in microseconds (uint16_t) chan8_raw : RC channel 8 value, in microseconds (uint16_t) rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t) ''' msg = MAVLink_rc_channels_raw_message(time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi) msg.pack(self) return msg def rc_channels_raw_send(self, time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi): ''' The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t) chan1_raw : RC channel 1 value, in microseconds (uint16_t) chan2_raw : RC channel 2 value, in microseconds (uint16_t) chan3_raw : RC channel 3 value, in microseconds (uint16_t) chan4_raw : RC channel 4 value, in microseconds (uint16_t) chan5_raw : RC channel 5 value, in microseconds (uint16_t) chan6_raw : RC channel 6 value, in microseconds (uint16_t) chan7_raw : RC channel 7 value, in microseconds (uint16_t) chan8_raw : RC channel 8 value, in microseconds (uint16_t) rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t) ''' return self.send(self.rc_channels_raw_encode(time_boot_ms, port, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, rssi)) def servo_output_raw_encode(self, time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw): ''' The RAW values of the servo outputs (for RC input from the remote, use the RC_CHANNELS messages). The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. time_usec : Timestamp (since UNIX epoch or microseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t) servo1_raw : Servo output 1 value, in microseconds (uint16_t) servo2_raw : Servo output 2 value, in microseconds (uint16_t) servo3_raw : Servo output 3 value, in microseconds (uint16_t) servo4_raw : Servo output 4 value, in microseconds (uint16_t) servo5_raw : Servo output 5 value, in microseconds (uint16_t) servo6_raw : Servo output 6 value, in microseconds (uint16_t) servo7_raw : Servo output 7 value, in microseconds (uint16_t) servo8_raw : Servo output 8 value, in microseconds (uint16_t) ''' msg = MAVLink_servo_output_raw_message(time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw) msg.pack(self) return msg def servo_output_raw_send(self, time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw): ''' The RAW values of the servo outputs (for RC input from the remote, use the RC_CHANNELS messages). The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. time_usec : Timestamp (since UNIX epoch or microseconds since system boot) (uint32_t) port : Servo output port (set of 8 outputs = 1 port). Most MAVs will just use one, but this allows to encode more than 8 servos. (uint8_t) servo1_raw : Servo output 1 value, in microseconds (uint16_t) servo2_raw : Servo output 2 value, in microseconds (uint16_t) servo3_raw : Servo output 3 value, in microseconds (uint16_t) servo4_raw : Servo output 4 value, in microseconds (uint16_t) servo5_raw : Servo output 5 value, in microseconds (uint16_t) servo6_raw : Servo output 6 value, in microseconds (uint16_t) servo7_raw : Servo output 7 value, in microseconds (uint16_t) servo8_raw : Servo output 8 value, in microseconds (uint16_t) ''' return self.send(self.servo_output_raw_encode(time_usec, port, servo1_raw, servo2_raw, servo3_raw, servo4_raw, servo5_raw, servo6_raw, servo7_raw, servo8_raw)) def mission_request_partial_list_encode(self, target_system, target_component, start_index, end_index): ''' Request the overall list of MISSIONs from the system/component. http://qgroundcontrol.org/mavlink/waypoint_protocol target_system : System ID (uint8_t) target_component : Component ID (uint8_t) start_index : Start index, 0 by default (int16_t) end_index : End index, -1 by default (-1: send list to end). Else a valid index of the list (int16_t) ''' msg = MAVLink_mission_request_partial_list_message(target_system, target_component, start_index, end_index) msg.pack(self) return msg def mission_request_partial_list_send(self, target_system, target_component, start_index, end_index): ''' Request the overall list of MISSIONs from the system/component. http://qgroundcontrol.org/mavlink/waypoint_protocol target_system : System ID (uint8_t) target_component : Component ID (uint8_t) start_index : Start index, 0 by default (int16_t) end_index : End index, -1 by default (-1: send list to end). Else a valid index of the list (int16_t) ''' return self.send(self.mission_request_partial_list_encode(target_system, target_component, start_index, end_index)) def mission_write_partial_list_encode(self, target_system, target_component, start_index, end_index): ''' This message is sent to the MAV to write a partial list. If start index == end index, only one item will be transmitted / updated. If the start index is NOT 0 and above the current list size, this request should be REJECTED! target_system : System ID (uint8_t) target_component : Component ID (uint8_t) start_index : Start index, 0 by default and smaller / equal to the largest index of the current onboard list. (int16_t) end_index : End index, equal or greater than start index. (int16_t) ''' msg = MAVLink_mission_write_partial_list_message(target_system, target_component, start_index, end_index) msg.pack(self) return msg def mission_write_partial_list_send(self, target_system, target_component, start_index, end_index): ''' This message is sent to the MAV to write a partial list. If start index == end index, only one item will be transmitted / updated. If the start index is NOT 0 and above the current list size, this request should be REJECTED! target_system : System ID (uint8_t) target_component : Component ID (uint8_t) start_index : Start index, 0 by default and smaller / equal to the largest index of the current onboard list. (int16_t) end_index : End index, equal or greater than start index. (int16_t) ''' return self.send(self.mission_write_partial_list_encode(target_system, target_component, start_index, end_index)) def mission_item_encode(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z): ''' Message encoding a mission item. This message is emitted to announce the presence of a mission item and to set a mission item on the system. The mission item can be either in x, y, z meters (type: LOCAL) or x:lat, y:lon, z:altitude. Local frame is Z-down, right handed (NED), global frame is Z-up, right handed (ENU). See also http://qgroundcontrol.org/mavlink/waypoint_protocol. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) frame : The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h (uint8_t) command : The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs (uint16_t) current : false:0, true:1 (uint8_t) autocontinue : autocontinue to next wp (uint8_t) param1 : PARAM1 / For NAV command MISSIONs: Radius in which the MISSION is accepted as reached, in meters (float) param2 : PARAM2 / For NAV command MISSIONs: Time that the MAV should stay inside the PARAM1 radius before advancing, in milliseconds (float) param3 : PARAM3 / For LOITER command MISSIONs: Orbit to circle around the MISSION, in meters. If positive the orbit direction should be clockwise, if negative the orbit direction should be counter-clockwise. (float) param4 : PARAM4 / For NAV and LOITER command MISSIONs: Yaw orientation in degrees, [0..360] 0 = NORTH (float) x : PARAM5 / local: x position, global: latitude (float) y : PARAM6 / y position: global: longitude (float) z : PARAM7 / z position: global: altitude (float) ''' msg = MAVLink_mission_item_message(target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z) msg.pack(self) return msg def mission_item_send(self, target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z): ''' Message encoding a mission item. This message is emitted to announce the presence of a mission item and to set a mission item on the system. The mission item can be either in x, y, z meters (type: LOCAL) or x:lat, y:lon, z:altitude. Local frame is Z-down, right handed (NED), global frame is Z-up, right handed (ENU). See also http://qgroundcontrol.org/mavlink/waypoint_protocol. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) frame : The coordinate system of the MISSION. see MAV_FRAME in mavlink_types.h (uint8_t) command : The scheduled action for the MISSION. see MAV_CMD in common.xml MAVLink specs (uint16_t) current : false:0, true:1 (uint8_t) autocontinue : autocontinue to next wp (uint8_t) param1 : PARAM1 / For NAV command MISSIONs: Radius in which the MISSION is accepted as reached, in meters (float) param2 : PARAM2 / For NAV command MISSIONs: Time that the MAV should stay inside the PARAM1 radius before advancing, in milliseconds (float) param3 : PARAM3 / For LOITER command MISSIONs: Orbit to circle around the MISSION, in meters. If positive the orbit direction should be clockwise, if negative the orbit direction should be counter-clockwise. (float) param4 : PARAM4 / For NAV and LOITER command MISSIONs: Yaw orientation in degrees, [0..360] 0 = NORTH (float) x : PARAM5 / local: x position, global: latitude (float) y : PARAM6 / y position: global: longitude (float) z : PARAM7 / z position: global: altitude (float) ''' return self.send(self.mission_item_encode(target_system, target_component, seq, frame, command, current, autocontinue, param1, param2, param3, param4, x, y, z)) def mission_request_encode(self, target_system, target_component, seq): ''' Request the information of the mission item with the sequence number seq. The response of the system to this message should be a MISSION_ITEM message. http://qgroundcontrol.org/mavlink/waypoint_protocol target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) ''' msg = MAVLink_mission_request_message(target_system, target_component, seq) msg.pack(self) return msg def mission_request_send(self, target_system, target_component, seq): ''' Request the information of the mission item with the sequence number seq. The response of the system to this message should be a MISSION_ITEM message. http://qgroundcontrol.org/mavlink/waypoint_protocol target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) ''' return self.send(self.mission_request_encode(target_system, target_component, seq)) def mission_set_current_encode(self, target_system, target_component, seq): ''' Set the mission item with sequence number seq as current item. This means that the MAV will continue to this mission item on the shortest path (not following the mission items in-between). target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) ''' msg = MAVLink_mission_set_current_message(target_system, target_component, seq) msg.pack(self) return msg def mission_set_current_send(self, target_system, target_component, seq): ''' Set the mission item with sequence number seq as current item. This means that the MAV will continue to this mission item on the shortest path (not following the mission items in-between). target_system : System ID (uint8_t) target_component : Component ID (uint8_t) seq : Sequence (uint16_t) ''' return self.send(self.mission_set_current_encode(target_system, target_component, seq)) def mission_current_encode(self, seq): ''' Message that announces the sequence number of the current active mission item. The MAV will fly towards this mission item. seq : Sequence (uint16_t) ''' msg = MAVLink_mission_current_message(seq) msg.pack(self) return msg def mission_current_send(self, seq): ''' Message that announces the sequence number of the current active mission item. The MAV will fly towards this mission item. seq : Sequence (uint16_t) ''' return self.send(self.mission_current_encode(seq)) def mission_request_list_encode(self, target_system, target_component): ''' Request the overall list of mission items from the system/component. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' msg = MAVLink_mission_request_list_message(target_system, target_component) msg.pack(self) return msg def mission_request_list_send(self, target_system, target_component): ''' Request the overall list of mission items from the system/component. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' return self.send(self.mission_request_list_encode(target_system, target_component)) def mission_count_encode(self, target_system, target_component, count): ''' This message is emitted as response to MISSION_REQUEST_LIST by the MAV and to initiate a write transaction. The GCS can then request the individual mission item based on the knowledge of the total number of MISSIONs. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) count : Number of mission items in the sequence (uint16_t) ''' msg = MAVLink_mission_count_message(target_system, target_component, count) msg.pack(self) return msg def mission_count_send(self, target_system, target_component, count): ''' This message is emitted as response to MISSION_REQUEST_LIST by the MAV and to initiate a write transaction. The GCS can then request the individual mission item based on the knowledge of the total number of MISSIONs. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) count : Number of mission items in the sequence (uint16_t) ''' return self.send(self.mission_count_encode(target_system, target_component, count)) def mission_clear_all_encode(self, target_system, target_component): ''' Delete all mission items at once. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' msg = MAVLink_mission_clear_all_message(target_system, target_component) msg.pack(self) return msg def mission_clear_all_send(self, target_system, target_component): ''' Delete all mission items at once. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) ''' return self.send(self.mission_clear_all_encode(target_system, target_component)) def mission_item_reached_encode(self, seq): ''' A certain mission item has been reached. The system will either hold this position (or circle on the orbit) or (if the autocontinue on the WP was set) continue to the next MISSION. seq : Sequence (uint16_t) ''' msg = MAVLink_mission_item_reached_message(seq) msg.pack(self) return msg def mission_item_reached_send(self, seq): ''' A certain mission item has been reached. The system will either hold this position (or circle on the orbit) or (if the autocontinue on the WP was set) continue to the next MISSION. seq : Sequence (uint16_t) ''' return self.send(self.mission_item_reached_encode(seq)) def mission_ack_encode(self, target_system, target_component, type): ''' Ack message during MISSION handling. The type field states if this message is a positive ack (type=0) or if an error happened (type=non-zero). target_system : System ID (uint8_t) target_component : Component ID (uint8_t) type : See MAV_MISSION_RESULT enum (uint8_t) ''' msg = MAVLink_mission_ack_message(target_system, target_component, type) msg.pack(self) return msg def mission_ack_send(self, target_system, target_component, type): ''' Ack message during MISSION handling. The type field states if this message is a positive ack (type=0) or if an error happened (type=non-zero). target_system : System ID (uint8_t) target_component : Component ID (uint8_t) type : See MAV_MISSION_RESULT enum (uint8_t) ''' return self.send(self.mission_ack_encode(target_system, target_component, type)) def set_gps_global_origin_encode(self, target_system, latitude, longitude, altitude): ''' As local MISSIONs exist, the global MISSION reference allows to transform between the local coordinate frame and the global (GPS) coordinate frame. This can be necessary when e.g. in- and outdoor settings are connected and the MAV should move from in- to outdoor. target_system : System ID (uint8_t) latitude : global position * 1E7 (int32_t) longitude : global position * 1E7 (int32_t) altitude : global position * 1000 (int32_t) ''' msg = MAVLink_set_gps_global_origin_message(target_system, latitude, longitude, altitude) msg.pack(self) return msg def set_gps_global_origin_send(self, target_system, latitude, longitude, altitude): ''' As local MISSIONs exist, the global MISSION reference allows to transform between the local coordinate frame and the global (GPS) coordinate frame. This can be necessary when e.g. in- and outdoor settings are connected and the MAV should move from in- to outdoor. target_system : System ID (uint8_t) latitude : global position * 1E7 (int32_t) longitude : global position * 1E7 (int32_t) altitude : global position * 1000 (int32_t) ''' return self.send(self.set_gps_global_origin_encode(target_system, latitude, longitude, altitude)) def gps_global_origin_encode(self, latitude, longitude, altitude): ''' Once the MAV sets a new GPS-Local correspondence, this message announces the origin (0,0,0) position latitude : Latitude (WGS84), expressed as * 1E7 (int32_t) longitude : Longitude (WGS84), expressed as * 1E7 (int32_t) altitude : Altitude(WGS84), expressed as * 1000 (int32_t) ''' msg = MAVLink_gps_global_origin_message(latitude, longitude, altitude) msg.pack(self) return msg def gps_global_origin_send(self, latitude, longitude, altitude): ''' Once the MAV sets a new GPS-Local correspondence, this message announces the origin (0,0,0) position latitude : Latitude (WGS84), expressed as * 1E7 (int32_t) longitude : Longitude (WGS84), expressed as * 1E7 (int32_t) altitude : Altitude(WGS84), expressed as * 1000 (int32_t) ''' return self.send(self.gps_global_origin_encode(latitude, longitude, altitude)) def set_local_position_setpoint_encode(self, target_system, target_component, coordinate_frame, x, y, z, yaw): ''' Set the setpoint for a local position controller. This is the position in local coordinates the MAV should fly to. This message is sent by the path/MISSION planner to the onboard position controller. As some MAVs have a degree of freedom in yaw (e.g. all helicopters/quadrotors), the desired yaw angle is part of the message. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t) x : x position (float) y : y position (float) z : z position (float) yaw : Desired yaw angle (float) ''' msg = MAVLink_set_local_position_setpoint_message(target_system, target_component, coordinate_frame, x, y, z, yaw) msg.pack(self) return msg def set_local_position_setpoint_send(self, target_system, target_component, coordinate_frame, x, y, z, yaw): ''' Set the setpoint for a local position controller. This is the position in local coordinates the MAV should fly to. This message is sent by the path/MISSION planner to the onboard position controller. As some MAVs have a degree of freedom in yaw (e.g. all helicopters/quadrotors), the desired yaw angle is part of the message. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t) x : x position (float) y : y position (float) z : z position (float) yaw : Desired yaw angle (float) ''' return self.send(self.set_local_position_setpoint_encode(target_system, target_component, coordinate_frame, x, y, z, yaw)) def local_position_setpoint_encode(self, coordinate_frame, x, y, z, yaw): ''' Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t) x : x position (float) y : y position (float) z : z position (float) yaw : Desired yaw angle (float) ''' msg = MAVLink_local_position_setpoint_message(coordinate_frame, x, y, z, yaw) msg.pack(self) return msg def local_position_setpoint_send(self, coordinate_frame, x, y, z, yaw): ''' Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_LOCAL_NED or MAV_FRAME_LOCAL_ENU (uint8_t) x : x position (float) y : y position (float) z : z position (float) yaw : Desired yaw angle (float) ''' return self.send(self.local_position_setpoint_encode(coordinate_frame, x, y, z, yaw)) def global_position_setpoint_int_encode(self, coordinate_frame, latitude, longitude, altitude, yaw): ''' Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t) latitude : WGS84 Latitude position in degrees * 1E7 (int32_t) longitude : WGS84 Longitude position in degrees * 1E7 (int32_t) altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t) yaw : Desired yaw angle in degrees * 100 (int16_t) ''' msg = MAVLink_global_position_setpoint_int_message(coordinate_frame, latitude, longitude, altitude, yaw) msg.pack(self) return msg def global_position_setpoint_int_send(self, coordinate_frame, latitude, longitude, altitude, yaw): ''' Transmit the current local setpoint of the controller to other MAVs (collision avoidance) and to the GCS. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t) latitude : WGS84 Latitude position in degrees * 1E7 (int32_t) longitude : WGS84 Longitude position in degrees * 1E7 (int32_t) altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t) yaw : Desired yaw angle in degrees * 100 (int16_t) ''' return self.send(self.global_position_setpoint_int_encode(coordinate_frame, latitude, longitude, altitude, yaw)) def set_global_position_setpoint_int_encode(self, coordinate_frame, latitude, longitude, altitude, yaw): ''' Set the current global position setpoint. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t) latitude : WGS84 Latitude position in degrees * 1E7 (int32_t) longitude : WGS84 Longitude position in degrees * 1E7 (int32_t) altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t) yaw : Desired yaw angle in degrees * 100 (int16_t) ''' msg = MAVLink_set_global_position_setpoint_int_message(coordinate_frame, latitude, longitude, altitude, yaw) msg.pack(self) return msg def set_global_position_setpoint_int_send(self, coordinate_frame, latitude, longitude, altitude, yaw): ''' Set the current global position setpoint. coordinate_frame : Coordinate frame - valid values are only MAV_FRAME_GLOBAL or MAV_FRAME_GLOBAL_RELATIVE_ALT (uint8_t) latitude : WGS84 Latitude position in degrees * 1E7 (int32_t) longitude : WGS84 Longitude position in degrees * 1E7 (int32_t) altitude : WGS84 Altitude in meters * 1000 (positive for up) (int32_t) yaw : Desired yaw angle in degrees * 100 (int16_t) ''' return self.send(self.set_global_position_setpoint_int_encode(coordinate_frame, latitude, longitude, altitude, yaw)) def safety_set_allowed_area_encode(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z): ''' Set a safety zone (volume), which is defined by two corners of a cube. This message can be used to tell the MAV which setpoints/MISSIONs to accept and which to reject. Safety areas are often enforced by national or competition regulations. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t) p1x : x position 1 / Latitude 1 (float) p1y : y position 1 / Longitude 1 (float) p1z : z position 1 / Altitude 1 (float) p2x : x position 2 / Latitude 2 (float) p2y : y position 2 / Longitude 2 (float) p2z : z position 2 / Altitude 2 (float) ''' msg = MAVLink_safety_set_allowed_area_message(target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z) msg.pack(self) return msg def safety_set_allowed_area_send(self, target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z): ''' Set a safety zone (volume), which is defined by two corners of a cube. This message can be used to tell the MAV which setpoints/MISSIONs to accept and which to reject. Safety areas are often enforced by national or competition regulations. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t) p1x : x position 1 / Latitude 1 (float) p1y : y position 1 / Longitude 1 (float) p1z : z position 1 / Altitude 1 (float) p2x : x position 2 / Latitude 2 (float) p2y : y position 2 / Longitude 2 (float) p2z : z position 2 / Altitude 2 (float) ''' return self.send(self.safety_set_allowed_area_encode(target_system, target_component, frame, p1x, p1y, p1z, p2x, p2y, p2z)) def safety_allowed_area_encode(self, frame, p1x, p1y, p1z, p2x, p2y, p2z): ''' Read out the safety zone the MAV currently assumes. frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t) p1x : x position 1 / Latitude 1 (float) p1y : y position 1 / Longitude 1 (float) p1z : z position 1 / Altitude 1 (float) p2x : x position 2 / Latitude 2 (float) p2y : y position 2 / Longitude 2 (float) p2z : z position 2 / Altitude 2 (float) ''' msg = MAVLink_safety_allowed_area_message(frame, p1x, p1y, p1z, p2x, p2y, p2z) msg.pack(self) return msg def safety_allowed_area_send(self, frame, p1x, p1y, p1z, p2x, p2y, p2z): ''' Read out the safety zone the MAV currently assumes. frame : Coordinate frame, as defined by MAV_FRAME enum in mavlink_types.h. Can be either global, GPS, right-handed with Z axis up or local, right handed, Z axis down. (uint8_t) p1x : x position 1 / Latitude 1 (float) p1y : y position 1 / Longitude 1 (float) p1z : z position 1 / Altitude 1 (float) p2x : x position 2 / Latitude 2 (float) p2y : y position 2 / Longitude 2 (float) p2z : z position 2 / Altitude 2 (float) ''' return self.send(self.safety_allowed_area_encode(frame, p1x, p1y, p1z, p2x, p2y, p2z)) def set_roll_pitch_yaw_thrust_encode(self, target_system, target_component, roll, pitch, yaw, thrust): ''' Set roll, pitch and yaw. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) roll : Desired roll angle in radians (float) pitch : Desired pitch angle in radians (float) yaw : Desired yaw angle in radians (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' msg = MAVLink_set_roll_pitch_yaw_thrust_message(target_system, target_component, roll, pitch, yaw, thrust) msg.pack(self) return msg def set_roll_pitch_yaw_thrust_send(self, target_system, target_component, roll, pitch, yaw, thrust): ''' Set roll, pitch and yaw. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) roll : Desired roll angle in radians (float) pitch : Desired pitch angle in radians (float) yaw : Desired yaw angle in radians (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' return self.send(self.set_roll_pitch_yaw_thrust_encode(target_system, target_component, roll, pitch, yaw, thrust)) def set_roll_pitch_yaw_speed_thrust_encode(self, target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust): ''' Set roll, pitch and yaw. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) roll_speed : Desired roll angular speed in rad/s (float) pitch_speed : Desired pitch angular speed in rad/s (float) yaw_speed : Desired yaw angular speed in rad/s (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' msg = MAVLink_set_roll_pitch_yaw_speed_thrust_message(target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust) msg.pack(self) return msg def set_roll_pitch_yaw_speed_thrust_send(self, target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust): ''' Set roll, pitch and yaw. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) roll_speed : Desired roll angular speed in rad/s (float) pitch_speed : Desired pitch angular speed in rad/s (float) yaw_speed : Desired yaw angular speed in rad/s (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' return self.send(self.set_roll_pitch_yaw_speed_thrust_encode(target_system, target_component, roll_speed, pitch_speed, yaw_speed, thrust)) def roll_pitch_yaw_thrust_setpoint_encode(self, time_boot_ms, roll, pitch, yaw, thrust): ''' Setpoint in roll, pitch, yaw currently active on the system. time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll : Desired roll angle in radians (float) pitch : Desired pitch angle in radians (float) yaw : Desired yaw angle in radians (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' msg = MAVLink_roll_pitch_yaw_thrust_setpoint_message(time_boot_ms, roll, pitch, yaw, thrust) msg.pack(self) return msg def roll_pitch_yaw_thrust_setpoint_send(self, time_boot_ms, roll, pitch, yaw, thrust): ''' Setpoint in roll, pitch, yaw currently active on the system. time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll : Desired roll angle in radians (float) pitch : Desired pitch angle in radians (float) yaw : Desired yaw angle in radians (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' return self.send(self.roll_pitch_yaw_thrust_setpoint_encode(time_boot_ms, roll, pitch, yaw, thrust)) def roll_pitch_yaw_speed_thrust_setpoint_encode(self, time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust): ''' Setpoint in rollspeed, pitchspeed, yawspeed currently active on the system. time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll_speed : Desired roll angular speed in rad/s (float) pitch_speed : Desired pitch angular speed in rad/s (float) yaw_speed : Desired yaw angular speed in rad/s (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' msg = MAVLink_roll_pitch_yaw_speed_thrust_setpoint_message(time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust) msg.pack(self) return msg def roll_pitch_yaw_speed_thrust_setpoint_send(self, time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust): ''' Setpoint in rollspeed, pitchspeed, yawspeed currently active on the system. time_boot_ms : Timestamp in milliseconds since system boot (uint32_t) roll_speed : Desired roll angular speed in rad/s (float) pitch_speed : Desired pitch angular speed in rad/s (float) yaw_speed : Desired yaw angular speed in rad/s (float) thrust : Collective thrust, normalized to 0 .. 1 (float) ''' return self.send(self.roll_pitch_yaw_speed_thrust_setpoint_encode(time_boot_ms, roll_speed, pitch_speed, yaw_speed, thrust)) def set_quad_motors_setpoint_encode(self, target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw): ''' Setpoint in the four motor speeds target_system : System ID of the system that should set these motor commands (uint8_t) motor_front_nw : Front motor in + configuration, front left motor in x configuration (uint16_t) motor_right_ne : Right motor in + configuration, front right motor in x configuration (uint16_t) motor_back_se : Back motor in + configuration, back right motor in x configuration (uint16_t) motor_left_sw : Left motor in + configuration, back left motor in x configuration (uint16_t) ''' msg = MAVLink_set_quad_motors_setpoint_message(target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw) msg.pack(self) return msg def set_quad_motors_setpoint_send(self, target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw): ''' Setpoint in the four motor speeds target_system : System ID of the system that should set these motor commands (uint8_t) motor_front_nw : Front motor in + configuration, front left motor in x configuration (uint16_t) motor_right_ne : Right motor in + configuration, front right motor in x configuration (uint16_t) motor_back_se : Back motor in + configuration, back right motor in x configuration (uint16_t) motor_left_sw : Left motor in + configuration, back left motor in x configuration (uint16_t) ''' return self.send(self.set_quad_motors_setpoint_encode(target_system, motor_front_nw, motor_right_ne, motor_back_se, motor_left_sw)) def set_quad_swarm_roll_pitch_yaw_thrust_encode(self, target_systems, roll, pitch, yaw, thrust): ''' target_systems : System IDs for 6 quadrotors: 0..5, the ID's are the MAVLink IDs (uint8_t) roll : Desired roll angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t) pitch : Desired pitch angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t) yaw : Desired yaw angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t) thrust : Collective thrust, scaled to uint16 for 6 quadrotors: 0..5 (uint16_t) ''' msg = MAVLink_set_quad_swarm_roll_pitch_yaw_thrust_message(target_systems, roll, pitch, yaw, thrust) msg.pack(self) return msg def set_quad_swarm_roll_pitch_yaw_thrust_send(self, target_systems, roll, pitch, yaw, thrust): ''' target_systems : System IDs for 6 quadrotors: 0..5, the ID's are the MAVLink IDs (uint8_t) roll : Desired roll angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t) pitch : Desired pitch angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t) yaw : Desired yaw angle in radians, scaled to int16 for 6 quadrotors: 0..5 (int16_t) thrust : Collective thrust, scaled to uint16 for 6 quadrotors: 0..5 (uint16_t) ''' return self.send(self.set_quad_swarm_roll_pitch_yaw_thrust_encode(target_systems, roll, pitch, yaw, thrust)) def nav_controller_output_encode(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error): ''' Outputs of the APM navigation controller. The primary use of this message is to check the response and signs of the controller before actual flight and to assist with tuning controller parameters. nav_roll : Current desired roll in degrees (float) nav_pitch : Current desired pitch in degrees (float) nav_bearing : Current desired heading in degrees (int16_t) target_bearing : Bearing to current MISSION/target in degrees (int16_t) wp_dist : Distance to active MISSION in meters (uint16_t) alt_error : Current altitude error in meters (float) aspd_error : Current airspeed error in meters/second (float) xtrack_error : Current crosstrack error on x-y plane in meters (float) ''' msg = MAVLink_nav_controller_output_message(nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error) msg.pack(self) return msg def nav_controller_output_send(self, nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error): ''' Outputs of the APM navigation controller. The primary use of this message is to check the response and signs of the controller before actual flight and to assist with tuning controller parameters. nav_roll : Current desired roll in degrees (float) nav_pitch : Current desired pitch in degrees (float) nav_bearing : Current desired heading in degrees (int16_t) target_bearing : Bearing to current MISSION/target in degrees (int16_t) wp_dist : Distance to active MISSION in meters (uint16_t) alt_error : Current altitude error in meters (float) aspd_error : Current airspeed error in meters/second (float) xtrack_error : Current crosstrack error on x-y plane in meters (float) ''' return self.send(self.nav_controller_output_encode(nav_roll, nav_pitch, nav_bearing, target_bearing, wp_dist, alt_error, aspd_error, xtrack_error)) def state_correction_encode(self, xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr): ''' Corrects the systems state by adding an error correction term to the position and velocity, and by rotating the attitude by a correction angle. xErr : x position error (float) yErr : y position error (float) zErr : z position error (float) rollErr : roll error (radians) (float) pitchErr : pitch error (radians) (float) yawErr : yaw error (radians) (float) vxErr : x velocity (float) vyErr : y velocity (float) vzErr : z velocity (float) ''' msg = MAVLink_state_correction_message(xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr) msg.pack(self) return msg def state_correction_send(self, xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr): ''' Corrects the systems state by adding an error correction term to the position and velocity, and by rotating the attitude by a correction angle. xErr : x position error (float) yErr : y position error (float) zErr : z position error (float) rollErr : roll error (radians) (float) pitchErr : pitch error (radians) (float) yawErr : yaw error (radians) (float) vxErr : x velocity (float) vyErr : y velocity (float) vzErr : z velocity (float) ''' return self.send(self.state_correction_encode(xErr, yErr, zErr, rollErr, pitchErr, yawErr, vxErr, vyErr, vzErr)) def request_data_stream_encode(self, target_system, target_component, req_stream_id, req_message_rate, start_stop): ''' target_system : The target requested to send the message stream. (uint8_t) target_component : The target requested to send the message stream. (uint8_t) req_stream_id : The ID of the requested data stream (uint8_t) req_message_rate : The requested interval between two messages of this type (uint16_t) start_stop : 1 to start sending, 0 to stop sending. (uint8_t) ''' msg = MAVLink_request_data_stream_message(target_system, target_component, req_stream_id, req_message_rate, start_stop) msg.pack(self) return msg def request_data_stream_send(self, target_system, target_component, req_stream_id, req_message_rate, start_stop): ''' target_system : The target requested to send the message stream. (uint8_t) target_component : The target requested to send the message stream. (uint8_t) req_stream_id : The ID of the requested data stream (uint8_t) req_message_rate : The requested interval between two messages of this type (uint16_t) start_stop : 1 to start sending, 0 to stop sending. (uint8_t) ''' return self.send(self.request_data_stream_encode(target_system, target_component, req_stream_id, req_message_rate, start_stop)) def data_stream_encode(self, stream_id, message_rate, on_off): ''' stream_id : The ID of the requested data stream (uint8_t) message_rate : The requested interval between two messages of this type (uint16_t) on_off : 1 stream is enabled, 0 stream is stopped. (uint8_t) ''' msg = MAVLink_data_stream_message(stream_id, message_rate, on_off) msg.pack(self) return msg def data_stream_send(self, stream_id, message_rate, on_off): ''' stream_id : The ID of the requested data stream (uint8_t) message_rate : The requested interval between two messages of this type (uint16_t) on_off : 1 stream is enabled, 0 stream is stopped. (uint8_t) ''' return self.send(self.data_stream_encode(stream_id, message_rate, on_off)) def manual_control_encode(self, target, roll, pitch, yaw, thrust, roll_manual, pitch_manual, yaw_manual, thrust_manual): ''' target : The system to be controlled (uint8_t) roll : roll (float) pitch : pitch (float) yaw : yaw (float) thrust : thrust (float) roll_manual : roll control enabled auto:0, manual:1 (uint8_t) pitch_manual : pitch auto:0, manual:1 (uint8_t) yaw_manual : yaw auto:0, manual:1 (uint8_t) thrust_manual : thrust auto:0, manual:1 (uint8_t) ''' msg = MAVLink_manual_control_message(target, roll, pitch, yaw, thrust, roll_manual, pitch_manual, yaw_manual, thrust_manual) msg.pack(self) return msg def manual_control_send(self, target, roll, pitch, yaw, thrust, roll_manual, pitch_manual, yaw_manual, thrust_manual): ''' target : The system to be controlled (uint8_t) roll : roll (float) pitch : pitch (float) yaw : yaw (float) thrust : thrust (float) roll_manual : roll control enabled auto:0, manual:1 (uint8_t) pitch_manual : pitch auto:0, manual:1 (uint8_t) yaw_manual : yaw auto:0, manual:1 (uint8_t) thrust_manual : thrust auto:0, manual:1 (uint8_t) ''' return self.send(self.manual_control_encode(target, roll, pitch, yaw, thrust, roll_manual, pitch_manual, yaw_manual, thrust_manual)) def rc_channels_override_encode(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw): ''' The RAW values of the RC channels sent to the MAV to override info received from the RC radio. A value of -1 means no change to that channel. A value of 0 means control of that channel should be released back to the RC radio. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) chan1_raw : RC channel 1 value, in microseconds (uint16_t) chan2_raw : RC channel 2 value, in microseconds (uint16_t) chan3_raw : RC channel 3 value, in microseconds (uint16_t) chan4_raw : RC channel 4 value, in microseconds (uint16_t) chan5_raw : RC channel 5 value, in microseconds (uint16_t) chan6_raw : RC channel 6 value, in microseconds (uint16_t) chan7_raw : RC channel 7 value, in microseconds (uint16_t) chan8_raw : RC channel 8 value, in microseconds (uint16_t) ''' msg = MAVLink_rc_channels_override_message(target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw) msg.pack(self) return msg def rc_channels_override_send(self, target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw): ''' The RAW values of the RC channels sent to the MAV to override info received from the RC radio. A value of -1 means no change to that channel. A value of 0 means control of that channel should be released back to the RC radio. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. target_system : System ID (uint8_t) target_component : Component ID (uint8_t) chan1_raw : RC channel 1 value, in microseconds (uint16_t) chan2_raw : RC channel 2 value, in microseconds (uint16_t) chan3_raw : RC channel 3 value, in microseconds (uint16_t) chan4_raw : RC channel 4 value, in microseconds (uint16_t) chan5_raw : RC channel 5 value, in microseconds (uint16_t) chan6_raw : RC channel 6 value, in microseconds (uint16_t) chan7_raw : RC channel 7 value, in microseconds (uint16_t) chan8_raw : RC channel 8 value, in microseconds (uint16_t) ''' return self.send(self.rc_channels_override_encode(target_system, target_component, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw)) def vfr_hud_encode(self, airspeed, groundspeed, heading, throttle, alt, climb): ''' Metrics typically displayed on a HUD for fixed wing aircraft airspeed : Current airspeed in m/s (float) groundspeed : Current ground speed in m/s (float) heading : Current heading in degrees, in compass units (0..360, 0=north) (int16_t) throttle : Current throttle setting in integer percent, 0 to 100 (uint16_t) alt : Current altitude (MSL), in meters (float) climb : Current climb rate in meters/second (float) ''' msg = MAVLink_vfr_hud_message(airspeed, groundspeed, heading, throttle, alt, climb) msg.pack(self) return msg def vfr_hud_send(self, airspeed, groundspeed, heading, throttle, alt, climb): ''' Metrics typically displayed on a HUD for fixed wing aircraft airspeed : Current airspeed in m/s (float) groundspeed : Current ground speed in m/s (float) heading : Current heading in degrees, in compass units (0..360, 0=north) (int16_t) throttle : Current throttle setting in integer percent, 0 to 100 (uint16_t) alt : Current altitude (MSL), in meters (float) climb : Current climb rate in meters/second (float) ''' return self.send(self.vfr_hud_encode(airspeed, groundspeed, heading, throttle, alt, climb)) def command_long_encode(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7): ''' Send a command with up to four parameters to the MAV target_system : System which should execute the command (uint8_t) target_component : Component which should execute the command, 0 for all components (uint8_t) command : Command ID, as defined by MAV_CMD enum. (uint16_t) confirmation : 0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for kill command) (uint8_t) param1 : Parameter 1, as defined by MAV_CMD enum. (float) param2 : Parameter 2, as defined by MAV_CMD enum. (float) param3 : Parameter 3, as defined by MAV_CMD enum. (float) param4 : Parameter 4, as defined by MAV_CMD enum. (float) param5 : Parameter 5, as defined by MAV_CMD enum. (float) param6 : Parameter 6, as defined by MAV_CMD enum. (float) param7 : Parameter 7, as defined by MAV_CMD enum. (float) ''' msg = MAVLink_command_long_message(target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7) msg.pack(self) return msg def command_long_send(self, target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7): ''' Send a command with up to four parameters to the MAV target_system : System which should execute the command (uint8_t) target_component : Component which should execute the command, 0 for all components (uint8_t) command : Command ID, as defined by MAV_CMD enum. (uint16_t) confirmation : 0: First transmission of this command. 1-255: Confirmation transmissions (e.g. for kill command) (uint8_t) param1 : Parameter 1, as defined by MAV_CMD enum. (float) param2 : Parameter 2, as defined by MAV_CMD enum. (float) param3 : Parameter 3, as defined by MAV_CMD enum. (float) param4 : Parameter 4, as defined by MAV_CMD enum. (float) param5 : Parameter 5, as defined by MAV_CMD enum. (float) param6 : Parameter 6, as defined by MAV_CMD enum. (float) param7 : Parameter 7, as defined by MAV_CMD enum. (float) ''' return self.send(self.command_long_encode(target_system, target_component, command, confirmation, param1, param2, param3, param4, param5, param6, param7)) def command_ack_encode(self, command, result): ''' Report status of a command. Includes feedback wether the command was executed. command : Command ID, as defined by MAV_CMD enum. (uint16_t) result : See MAV_RESULT enum (uint8_t) ''' msg = MAVLink_command_ack_message(command, result) msg.pack(self) return msg def command_ack_send(self, command, result): ''' Report status of a command. Includes feedback wether the command was executed. command : Command ID, as defined by MAV_CMD enum. (uint16_t) result : See MAV_RESULT enum (uint8_t) ''' return self.send(self.command_ack_encode(command, result)) def local_position_ned_system_global_offset_encode(self, time_boot_ms, x, y, z, roll, pitch, yaw): ''' The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED messages of MAV X and the global coordinate frame in NED coordinates. Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention) time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) x : X Position (float) y : Y Position (float) z : Z Position (float) roll : Roll (float) pitch : Pitch (float) yaw : Yaw (float) ''' msg = MAVLink_local_position_ned_system_global_offset_message(time_boot_ms, x, y, z, roll, pitch, yaw) msg.pack(self) return msg def local_position_ned_system_global_offset_send(self, time_boot_ms, x, y, z, roll, pitch, yaw): ''' The offset in X, Y, Z and yaw between the LOCAL_POSITION_NED messages of MAV X and the global coordinate frame in NED coordinates. Coordinate frame is right-handed, Z-axis down (aeronautical frame, NED / north-east-down convention) time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) x : X Position (float) y : Y Position (float) z : Z Position (float) roll : Roll (float) pitch : Pitch (float) yaw : Yaw (float) ''' return self.send(self.local_position_ned_system_global_offset_encode(time_boot_ms, x, y, z, roll, pitch, yaw)) def hil_state_encode(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc): ''' Sent from simulation to autopilot. This packet is useful for high throughput applications such as hardware in the loop simulations. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) roll : Roll angle (rad) (float) pitch : Pitch angle (rad) (float) yaw : Yaw angle (rad) (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) lat : Latitude, expressed as * 1E7 (int32_t) lon : Longitude, expressed as * 1E7 (int32_t) alt : Altitude in meters, expressed as * 1000 (millimeters) (int32_t) vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t) vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t) vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t) xacc : X acceleration (mg) (int16_t) yacc : Y acceleration (mg) (int16_t) zacc : Z acceleration (mg) (int16_t) ''' msg = MAVLink_hil_state_message(time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc) msg.pack(self) return msg def hil_state_send(self, time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc): ''' Sent from simulation to autopilot. This packet is useful for high throughput applications such as hardware in the loop simulations. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) roll : Roll angle (rad) (float) pitch : Pitch angle (rad) (float) yaw : Yaw angle (rad) (float) rollspeed : Roll angular speed (rad/s) (float) pitchspeed : Pitch angular speed (rad/s) (float) yawspeed : Yaw angular speed (rad/s) (float) lat : Latitude, expressed as * 1E7 (int32_t) lon : Longitude, expressed as * 1E7 (int32_t) alt : Altitude in meters, expressed as * 1000 (millimeters) (int32_t) vx : Ground X Speed (Latitude), expressed as m/s * 100 (int16_t) vy : Ground Y Speed (Longitude), expressed as m/s * 100 (int16_t) vz : Ground Z Speed (Altitude), expressed as m/s * 100 (int16_t) xacc : X acceleration (mg) (int16_t) yacc : Y acceleration (mg) (int16_t) zacc : Z acceleration (mg) (int16_t) ''' return self.send(self.hil_state_encode(time_usec, roll, pitch, yaw, rollspeed, pitchspeed, yawspeed, lat, lon, alt, vx, vy, vz, xacc, yacc, zacc)) def hil_controls_encode(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode): ''' Sent from autopilot to simulation. Hardware in the loop control outputs time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) roll_ailerons : Control output -1 .. 1 (float) pitch_elevator : Control output -1 .. 1 (float) yaw_rudder : Control output -1 .. 1 (float) throttle : Throttle 0 .. 1 (float) aux1 : Aux 1, -1 .. 1 (float) aux2 : Aux 2, -1 .. 1 (float) aux3 : Aux 3, -1 .. 1 (float) aux4 : Aux 4, -1 .. 1 (float) mode : System mode (MAV_MODE) (uint8_t) nav_mode : Navigation mode (MAV_NAV_MODE) (uint8_t) ''' msg = MAVLink_hil_controls_message(time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode) msg.pack(self) return msg def hil_controls_send(self, time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode): ''' Sent from autopilot to simulation. Hardware in the loop control outputs time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) roll_ailerons : Control output -1 .. 1 (float) pitch_elevator : Control output -1 .. 1 (float) yaw_rudder : Control output -1 .. 1 (float) throttle : Throttle 0 .. 1 (float) aux1 : Aux 1, -1 .. 1 (float) aux2 : Aux 2, -1 .. 1 (float) aux3 : Aux 3, -1 .. 1 (float) aux4 : Aux 4, -1 .. 1 (float) mode : System mode (MAV_MODE) (uint8_t) nav_mode : Navigation mode (MAV_NAV_MODE) (uint8_t) ''' return self.send(self.hil_controls_encode(time_usec, roll_ailerons, pitch_elevator, yaw_rudder, throttle, aux1, aux2, aux3, aux4, mode, nav_mode)) def hil_rc_inputs_raw_encode(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi): ''' Sent from simulation to autopilot. The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) chan1_raw : RC channel 1 value, in microseconds (uint16_t) chan2_raw : RC channel 2 value, in microseconds (uint16_t) chan3_raw : RC channel 3 value, in microseconds (uint16_t) chan4_raw : RC channel 4 value, in microseconds (uint16_t) chan5_raw : RC channel 5 value, in microseconds (uint16_t) chan6_raw : RC channel 6 value, in microseconds (uint16_t) chan7_raw : RC channel 7 value, in microseconds (uint16_t) chan8_raw : RC channel 8 value, in microseconds (uint16_t) chan9_raw : RC channel 9 value, in microseconds (uint16_t) chan10_raw : RC channel 10 value, in microseconds (uint16_t) chan11_raw : RC channel 11 value, in microseconds (uint16_t) chan12_raw : RC channel 12 value, in microseconds (uint16_t) rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t) ''' msg = MAVLink_hil_rc_inputs_raw_message(time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi) msg.pack(self) return msg def hil_rc_inputs_raw_send(self, time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi): ''' Sent from simulation to autopilot. The RAW values of the RC channels received. The standard PPM modulation is as follows: 1000 microseconds: 0%, 2000 microseconds: 100%. Individual receivers/transmitters might violate this specification. time_usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t) chan1_raw : RC channel 1 value, in microseconds (uint16_t) chan2_raw : RC channel 2 value, in microseconds (uint16_t) chan3_raw : RC channel 3 value, in microseconds (uint16_t) chan4_raw : RC channel 4 value, in microseconds (uint16_t) chan5_raw : RC channel 5 value, in microseconds (uint16_t) chan6_raw : RC channel 6 value, in microseconds (uint16_t) chan7_raw : RC channel 7 value, in microseconds (uint16_t) chan8_raw : RC channel 8 value, in microseconds (uint16_t) chan9_raw : RC channel 9 value, in microseconds (uint16_t) chan10_raw : RC channel 10 value, in microseconds (uint16_t) chan11_raw : RC channel 11 value, in microseconds (uint16_t) chan12_raw : RC channel 12 value, in microseconds (uint16_t) rssi : Receive signal strength indicator, 0: 0%, 255: 100% (uint8_t) ''' return self.send(self.hil_rc_inputs_raw_encode(time_usec, chan1_raw, chan2_raw, chan3_raw, chan4_raw, chan5_raw, chan6_raw, chan7_raw, chan8_raw, chan9_raw, chan10_raw, chan11_raw, chan12_raw, rssi)) def optical_flow_encode(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance): ''' Optical flow from a flow sensor (e.g. optical mouse sensor) time_usec : Timestamp (UNIX) (uint64_t) sensor_id : Sensor ID (uint8_t) flow_x : Flow in pixels in x-sensor direction (int16_t) flow_y : Flow in pixels in y-sensor direction (int16_t) flow_comp_m_x : Flow in meters in x-sensor direction, angular-speed compensated (float) flow_comp_m_y : Flow in meters in y-sensor direction, angular-speed compensated (float) quality : Optical flow quality / confidence. 0: bad, 255: maximum quality (uint8_t) ground_distance : Ground distance in meters. Positive value: distance known. Negative value: Unknown distance (float) ''' msg = MAVLink_optical_flow_message(time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance) msg.pack(self) return msg def optical_flow_send(self, time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance): ''' Optical flow from a flow sensor (e.g. optical mouse sensor) time_usec : Timestamp (UNIX) (uint64_t) sensor_id : Sensor ID (uint8_t) flow_x : Flow in pixels in x-sensor direction (int16_t) flow_y : Flow in pixels in y-sensor direction (int16_t) flow_comp_m_x : Flow in meters in x-sensor direction, angular-speed compensated (float) flow_comp_m_y : Flow in meters in y-sensor direction, angular-speed compensated (float) quality : Optical flow quality / confidence. 0: bad, 255: maximum quality (uint8_t) ground_distance : Ground distance in meters. Positive value: distance known. Negative value: Unknown distance (float) ''' return self.send(self.optical_flow_encode(time_usec, sensor_id, flow_x, flow_y, flow_comp_m_x, flow_comp_m_y, quality, ground_distance)) def global_vision_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (milliseconds) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' msg = MAVLink_global_vision_position_estimate_message(usec, x, y, z, roll, pitch, yaw) msg.pack(self) return msg def global_vision_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (milliseconds) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' return self.send(self.global_vision_position_estimate_encode(usec, x, y, z, roll, pitch, yaw)) def vision_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (milliseconds) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' msg = MAVLink_vision_position_estimate_message(usec, x, y, z, roll, pitch, yaw) msg.pack(self) return msg def vision_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (milliseconds) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' return self.send(self.vision_position_estimate_encode(usec, x, y, z, roll, pitch, yaw)) def vision_speed_estimate_encode(self, usec, x, y, z): ''' usec : Timestamp (milliseconds) (uint64_t) x : Global X speed (float) y : Global Y speed (float) z : Global Z speed (float) ''' msg = MAVLink_vision_speed_estimate_message(usec, x, y, z) msg.pack(self) return msg def vision_speed_estimate_send(self, usec, x, y, z): ''' usec : Timestamp (milliseconds) (uint64_t) x : Global X speed (float) y : Global Y speed (float) z : Global Z speed (float) ''' return self.send(self.vision_speed_estimate_encode(usec, x, y, z)) def vicon_position_estimate_encode(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (milliseconds) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' msg = MAVLink_vicon_position_estimate_message(usec, x, y, z, roll, pitch, yaw) msg.pack(self) return msg def vicon_position_estimate_send(self, usec, x, y, z, roll, pitch, yaw): ''' usec : Timestamp (milliseconds) (uint64_t) x : Global X position (float) y : Global Y position (float) z : Global Z position (float) roll : Roll angle in rad (float) pitch : Pitch angle in rad (float) yaw : Yaw angle in rad (float) ''' return self.send(self.vicon_position_estimate_encode(usec, x, y, z, roll, pitch, yaw)) def memory_vect_encode(self, address, ver, type, value): ''' Send raw controller memory. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. address : Starting address of the debug variables (uint16_t) ver : Version code of the type variable. 0=unknown, type ignored and assumed int16_t. 1=as below (uint8_t) type : Type code of the memory variables. for ver = 1: 0=16 x int16_t, 1=16 x uint16_t, 2=16 x Q15, 3=16 x 1Q14 (uint8_t) value : Memory contents at specified address (int8_t) ''' msg = MAVLink_memory_vect_message(address, ver, type, value) msg.pack(self) return msg def memory_vect_send(self, address, ver, type, value): ''' Send raw controller memory. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. address : Starting address of the debug variables (uint16_t) ver : Version code of the type variable. 0=unknown, type ignored and assumed int16_t. 1=as below (uint8_t) type : Type code of the memory variables. for ver = 1: 0=16 x int16_t, 1=16 x uint16_t, 2=16 x Q15, 3=16 x 1Q14 (uint8_t) value : Memory contents at specified address (int8_t) ''' return self.send(self.memory_vect_encode(address, ver, type, value)) def debug_vect_encode(self, name, time_usec, x, y, z): ''' name : Name (char) time_usec : Timestamp (uint64_t) x : x (float) y : y (float) z : z (float) ''' msg = MAVLink_debug_vect_message(name, time_usec, x, y, z) msg.pack(self) return msg def debug_vect_send(self, name, time_usec, x, y, z): ''' name : Name (char) time_usec : Timestamp (uint64_t) x : x (float) y : y (float) z : z (float) ''' return self.send(self.debug_vect_encode(name, time_usec, x, y, z)) def named_value_float_encode(self, time_boot_ms, name, value): ''' Send a key-value pair as float. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) name : Name of the debug variable (char) value : Floating point value (float) ''' msg = MAVLink_named_value_float_message(time_boot_ms, name, value) msg.pack(self) return msg def named_value_float_send(self, time_boot_ms, name, value): ''' Send a key-value pair as float. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) name : Name of the debug variable (char) value : Floating point value (float) ''' return self.send(self.named_value_float_encode(time_boot_ms, name, value)) def named_value_int_encode(self, time_boot_ms, name, value): ''' Send a key-value pair as integer. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) name : Name of the debug variable (char) value : Signed integer value (int32_t) ''' msg = MAVLink_named_value_int_message(time_boot_ms, name, value) msg.pack(self) return msg def named_value_int_send(self, time_boot_ms, name, value): ''' Send a key-value pair as integer. The use of this message is discouraged for normal packets, but a quite efficient way for testing new messages and getting experimental debug output. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) name : Name of the debug variable (char) value : Signed integer value (int32_t) ''' return self.send(self.named_value_int_encode(time_boot_ms, name, value)) def statustext_encode(self, severity, text): ''' Status text message. These messages are printed in yellow in the COMM console of QGroundControl. WARNING: They consume quite some bandwidth, so use only for important status and error messages. If implemented wisely, these messages are buffered on the MCU and sent only at a limited rate (e.g. 10 Hz). severity : Severity of status. Relies on the definitions within RFC-5424. See enum MAV_SEVERITY. (uint8_t) text : Status text message, without null termination character (char) ''' msg = MAVLink_statustext_message(severity, text) msg.pack(self) return msg def statustext_send(self, severity, text): ''' Status text message. These messages are printed in yellow in the COMM console of QGroundControl. WARNING: They consume quite some bandwidth, so use only for important status and error messages. If implemented wisely, these messages are buffered on the MCU and sent only at a limited rate (e.g. 10 Hz). severity : Severity of status. Relies on the definitions within RFC-5424. See enum MAV_SEVERITY. (uint8_t) text : Status text message, without null termination character (char) ''' return self.send(self.statustext_encode(severity, text)) def debug_encode(self, time_boot_ms, ind, value): ''' Send a debug value. The index is used to discriminate between values. These values show up in the plot of QGroundControl as DEBUG N. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) ind : index of debug variable (uint8_t) value : DEBUG value (float) ''' msg = MAVLink_debug_message(time_boot_ms, ind, value) msg.pack(self) return msg def debug_send(self, time_boot_ms, ind, value): ''' Send a debug value. The index is used to discriminate between values. These values show up in the plot of QGroundControl as DEBUG N. time_boot_ms : Timestamp (milliseconds since system boot) (uint32_t) ind : index of debug variable (uint8_t) value : DEBUG value (float) ''' return self.send(self.debug_encode(time_boot_ms, ind, value))