/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include "AP_MotorsTri.h" extern const AP_HAL::HAL& hal; // init void AP_MotorsTri::init(motor_frame_class frame_class, motor_frame_type frame_type) { add_motor_num(AP_MOTORS_MOT_1); add_motor_num(AP_MOTORS_MOT_2); add_motor_num(AP_MOTORS_MOT_4); // set update rate for the 3 motors (but not the servo on channel 7) set_update_rate(_speed_hz); // set the motor_enabled flag so that the ESCs can be calibrated like other frame types motor_enabled[AP_MOTORS_MOT_1] = true; motor_enabled[AP_MOTORS_MOT_2] = true; motor_enabled[AP_MOTORS_MOT_4] = true; // allow mapping of motor7 add_motor_num(AP_MOTORS_CH_TRI_YAW); // Check for tail servo _have_tail_servo = SRV_Channels::function_assigned(SRV_Channel::k_motor7); SRV_Channels::set_angle(SRV_Channels::get_motor_function(AP_MOTORS_CH_TRI_YAW), _yaw_servo_angle_max_deg*100); // check for reverse tricopter _pitch_reversed = frame_type == MOTOR_FRAME_TYPE_PLUSREV; _mav_type = MAV_TYPE_TRICOPTER; // record successful initialisation if what we setup was the desired frame_class set_initialised_ok(frame_class == MOTOR_FRAME_TRI); } // set frame class (i.e. quad, hexa, heli) and type (i.e. x, plus) void AP_MotorsTri::set_frame_class_and_type(motor_frame_class frame_class, motor_frame_type frame_type) { // check for reverse tricopter _pitch_reversed = frame_type == MOTOR_FRAME_TYPE_PLUSREV; set_initialised_ok((frame_class == MOTOR_FRAME_TRI) && SRV_Channels::function_assigned(SRV_Channel::k_motor7)); } // set update rate to motors - a value in hertz void AP_MotorsTri::set_update_rate(uint16_t speed_hz) { // record requested speed _speed_hz = speed_hz; // set update rate for the 3 motors (but not the servo on channel 7) uint32_t mask = 1U << AP_MOTORS_MOT_1 | 1U << AP_MOTORS_MOT_2 | 1U << AP_MOTORS_MOT_4; rc_set_freq(mask, _speed_hz); } void AP_MotorsTri::output_to_motors() { switch (_spool_state) { case SpoolState::SHUT_DOWN: // sends minimum values out to the motors for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { if (motor_enabled_mask(i)) { _actuator[AP_MOTORS_MOT_1+i] = 0; } } rc_write_angle(AP_MOTORS_CH_TRI_YAW, 0); break; case SpoolState::GROUND_IDLE: // sends output to motors when armed but not flying set_actuator_with_slew(_actuator[AP_MOTORS_MOT_1], actuator_spin_up_to_ground_idle()); set_actuator_with_slew(_actuator[AP_MOTORS_MOT_2], actuator_spin_up_to_ground_idle()); set_actuator_with_slew(_actuator[AP_MOTORS_MOT_4], actuator_spin_up_to_ground_idle()); rc_write_angle(AP_MOTORS_CH_TRI_YAW, 0); break; case SpoolState::SPOOLING_UP: case SpoolState::THROTTLE_UNLIMITED: case SpoolState::SPOOLING_DOWN: // set motor output based on thrust requests set_actuator_with_slew(_actuator[AP_MOTORS_MOT_1], thr_lin.thrust_to_actuator(_thrust_right)); set_actuator_with_slew(_actuator[AP_MOTORS_MOT_2], thr_lin.thrust_to_actuator(_thrust_left)); set_actuator_with_slew(_actuator[AP_MOTORS_MOT_4], thr_lin.thrust_to_actuator(_thrust_rear)); rc_write_angle(AP_MOTORS_CH_TRI_YAW, degrees(_pivot_angle)*100); break; } rc_write(AP_MOTORS_MOT_1, output_to_pwm(_actuator[AP_MOTORS_MOT_1])); rc_write(AP_MOTORS_MOT_2, output_to_pwm(_actuator[AP_MOTORS_MOT_2])); rc_write(AP_MOTORS_MOT_4, output_to_pwm(_actuator[AP_MOTORS_MOT_4])); } // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint32_t AP_MotorsTri::get_motor_mask() { // tri copter uses channels 1,2,4 and 7 uint32_t motor_mask = (1U << AP_MOTORS_MOT_1) | (1U << AP_MOTORS_MOT_2) | (1U << AP_MOTORS_MOT_4); uint32_t mask = motor_mask_to_srv_channel_mask(motor_mask); // add parent's mask mask |= AP_MotorsMulticopter::get_motor_mask(); return mask; } // output_armed - sends commands to the motors // includes new scaling stability patch void AP_MotorsTri::output_armed_stabilizing() { float roll_thrust; // roll thrust input value, +/- 1.0 float pitch_thrust; // pitch thrust input value, +/- 1.0 float yaw_thrust; // yaw thrust input value, +/- 1.0 float throttle_thrust; // throttle thrust input value, 0.0 - 1.0 float throttle_avg_max; // throttle thrust average maximum value, 0.0 - 1.0 float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing float rpy_scale = 1.0f; // this is used to scale the roll, pitch and yaw to fit within the motor limits float rpy_low = 0.0f; // lowest motor value float rpy_high = 0.0f; // highest motor value float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy SRV_Channels::set_angle(SRV_Channels::get_motor_function(AP_MOTORS_CH_TRI_YAW), _yaw_servo_angle_max_deg*100); // sanity check YAW_SV_ANGLE parameter value to avoid divide by zero _yaw_servo_angle_max_deg.set(constrain_float(_yaw_servo_angle_max_deg, AP_MOTORS_TRI_SERVO_RANGE_DEG_MIN, AP_MOTORS_TRI_SERVO_RANGE_DEG_MAX)); // apply voltage and air pressure compensation const float compensation_gain = thr_lin.get_compensation_gain(); roll_thrust = (_roll_in + _roll_in_ff) * compensation_gain; pitch_thrust = (_pitch_in + _pitch_in_ff) * compensation_gain; yaw_thrust = (_yaw_in + _yaw_in_ff) * compensation_gain * sinf(radians(_yaw_servo_angle_max_deg)); // we scale this so a thrust request of 1.0f will ask for full servo deflection at full rear throttle throttle_thrust = get_throttle() * compensation_gain; throttle_avg_max = _throttle_avg_max * compensation_gain; // check for reversed pitch if (_pitch_reversed) { pitch_thrust *= -1.0f; } // VTOL plane may not have tail servo if (!_have_tail_servo) { _pivot_angle = 0.0; } else { // calculate angle of yaw pivot _pivot_angle = safe_asin(yaw_thrust); if (fabsf(_pivot_angle) > radians(_yaw_servo_angle_max_deg)) { limit.yaw = true; _pivot_angle = constrain_float(_pivot_angle, -radians(_yaw_servo_angle_max_deg), radians(_yaw_servo_angle_max_deg)); } } float pivot_thrust_max = cosf(_pivot_angle); float thrust_max = 1.0f; // sanity check throttle is above zero and below current limited throttle if (throttle_thrust <= 0.0f) { throttle_thrust = 0.0f; limit.throttle_lower = true; } if (throttle_thrust >= _throttle_thrust_max) { throttle_thrust = _throttle_thrust_max; limit.throttle_upper = true; } throttle_avg_max = constrain_float(throttle_avg_max, throttle_thrust, _throttle_thrust_max); // The following mix may be offer less coupling between axis but needs testing //_thrust_right = roll_thrust * -0.5f + pitch_thrust * 1.0f; //_thrust_left = roll_thrust * 0.5f + pitch_thrust * 1.0f; //_thrust_rear = 0; _thrust_right = roll_thrust * -0.5f + pitch_thrust * 0.5f; _thrust_left = roll_thrust * 0.5f + pitch_thrust * 0.5f; _thrust_rear = pitch_thrust * -0.5f; // calculate roll and pitch for each motor // set rpy_low and rpy_high to the lowest and highest values of the motors // record lowest roll pitch command rpy_low = MIN(_thrust_right, _thrust_left); rpy_high = MAX(_thrust_right, _thrust_left); if (rpy_low > _thrust_rear) { rpy_low = _thrust_rear; } // check to see if the rear motor will reach maximum thrust before the front two motors if ((1.0f - rpy_high) > (pivot_thrust_max - _thrust_rear)) { thrust_max = pivot_thrust_max; rpy_high = _thrust_rear; } // calculate throttle that gives most possible room for yaw (range 1000 ~ 2000) which is the lower of: // 1. 0.5f - (rpy_low+rpy_high)/2.0 - this would give the maximum possible room margin above the highest motor and below the lowest // 2. the higher of: // a) the pilot's throttle input // b) the point _throttle_rpy_mix between the pilot's input throttle and hover-throttle // Situation #2 ensure we never increase the throttle above hover throttle unless the pilot has commanded this. // Situation #2b allows us to raise the throttle above what the pilot commanded but not so far that it would actually cause the copter to rise. // We will choose #1 (the best throttle for yaw control) if that means reducing throttle to the motors (i.e. we favor reducing throttle *because* it provides better yaw control) // We will choose #2 (a mix of pilot and hover throttle) only when the throttle is quite low. We favor reducing throttle instead of better yaw control because the pilot has commanded it // check everything fits throttle_thrust_best_rpy = MIN(0.5f * thrust_max - (rpy_low + rpy_high) / 2.0, throttle_avg_max); if (is_zero(rpy_low)) { rpy_scale = 1.0f; } else { rpy_scale = constrain_float(-throttle_thrust_best_rpy / rpy_low, 0.0f, 1.0f); } // calculate how close the motors can come to the desired throttle thr_adj = throttle_thrust - throttle_thrust_best_rpy; if (rpy_scale < 1.0f) { // Full range is being used by roll, pitch, and yaw. limit.roll = true; limit.pitch = true; if (thr_adj > 0.0f) { limit.throttle_upper = true; } thr_adj = 0.0f; } else { if (thr_adj < -(throttle_thrust_best_rpy + rpy_low)) { // Throttle can't be reduced to desired value thr_adj = -(throttle_thrust_best_rpy + rpy_low); } else if (thr_adj > thrust_max - (throttle_thrust_best_rpy + rpy_high)) { // Throttle can't be increased to desired value thr_adj = thrust_max - (throttle_thrust_best_rpy + rpy_high); limit.throttle_upper = true; } } // determine throttle thrust for harmonic notch const float throttle_thrust_best_plus_adj = throttle_thrust_best_rpy + thr_adj; // compensation_gain can never be zero _throttle_out = throttle_thrust_best_plus_adj / compensation_gain; // add scaled roll, pitch, constrained yaw and throttle for each motor _thrust_right = throttle_thrust_best_plus_adj + rpy_scale * _thrust_right; _thrust_left = throttle_thrust_best_plus_adj + rpy_scale * _thrust_left; _thrust_rear = throttle_thrust_best_plus_adj + rpy_scale * _thrust_rear; // scale pivot thrust to account for pivot angle // we should not need to check for divide by zero as _pivot_angle is constrained to the 5deg ~ 80 deg range _thrust_rear = _thrust_rear / cosf(_pivot_angle); // constrain all outputs to 0.0f to 1.0f // test code should be run with these lines commented out as they should not do anything _thrust_right = constrain_float(_thrust_right, 0.0f, 1.0f); _thrust_left = constrain_float(_thrust_left, 0.0f, 1.0f); _thrust_rear = constrain_float(_thrust_rear, 0.0f, 1.0f); } // output_test_seq - spin a motor at the pwm value specified // motor_seq is the motor's sequence number from 1 to the number of motors on the frame // pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000 void AP_MotorsTri::_output_test_seq(uint8_t motor_seq, int16_t pwm) { // output to motors and servos if (!_pitch_reversed) { switch (motor_seq) { case 1: // front right motor rc_write(AP_MOTORS_MOT_1, pwm); break; case 2: // back motor rc_write(AP_MOTORS_MOT_4, pwm); break; case 3: // back servo rc_write(AP_MOTORS_CH_TRI_YAW, pwm); break; case 4: // front left motor rc_write(AP_MOTORS_MOT_2, pwm); break; default: // do nothing break; } } else { switch (motor_seq) { case 1: // front motor rc_write(AP_MOTORS_MOT_4, pwm); break; case 2: // front servo rc_write(AP_MOTORS_CH_TRI_YAW, pwm); break; case 3: // back right motor rc_write(AP_MOTORS_MOT_1, pwm); break; case 4: // back left motor rc_write(AP_MOTORS_MOT_2, pwm); break; default: // do nothing break; } } } /* call vehicle supplied thrust compensation if set. This allows for vehicle specific thrust compensation for motor arrangements such as the forward motors tilting */ void AP_MotorsTri::thrust_compensation(void) { if (_thrust_compensation_callback) { // convert 3 thrust values into an array indexed by motor number float thrust[4] { _thrust_right, _thrust_left, 0, _thrust_rear }; // apply vehicle supplied compensation function _thrust_compensation_callback(thrust, 4); // extract compensated thrust values _thrust_right = thrust[0]; _thrust_left = thrust[1]; _thrust_rear = thrust[3]; } } /* override tricopter tail servo output in output_motor_mask */ void AP_MotorsTri::output_motor_mask(float thrust, uint16_t mask, float rudder_dt) { // normal multicopter output AP_MotorsMulticopter::output_motor_mask(thrust, mask, rudder_dt); // and override yaw servo rc_write_angle(AP_MOTORS_CH_TRI_YAW, 0); } float AP_MotorsTri::get_roll_factor(uint8_t i) { float ret = 0.0f; switch (i) { // right motor case AP_MOTORS_MOT_1: ret = -1.0f; break; // left motor case AP_MOTORS_MOT_2: ret = 1.0f; break; } return ret; } // This function is currently only used by AP_Motors_test #if APM_BUILD_TYPE(APM_BUILD_UNKNOWN) float AP_MotorsTri::get_pitch_factor_json(uint8_t i) { float ret = 0.0f; switch (i) { case AP_MOTORS_MOT_1: // front motors case AP_MOTORS_MOT_2: ret = 0.5f; break; case AP_MOTORS_MOT_4: // rear motor ret = -1.0f; break; } if (_pitch_reversed) { ret *= -1.0f; } return ret; } #endif // APM_BUILD_TYPE(APM_BUILD_UNKNOWN) // Run arming checks bool AP_MotorsTri::arming_checks(size_t buflen, char *buffer) const { #if !APM_BUILD_TYPE(APM_BUILD_ArduPlane) // Tilt Rotors do not need a yaw servo // Check for yaw servo if (!_have_tail_servo) { hal.util->snprintf(buffer, buflen, "no SERVOx_FUNCTION set to Motor7 for tail servo"); return false; } #endif // run base class checks return AP_MotorsMulticopter::arming_checks(buflen, buffer); } // This function is currently only used by AP_Motors_test #if APM_BUILD_TYPE(APM_BUILD_UNKNOWN) // Get the testing order for the motors uint8_t AP_MotorsTri::get_motor_test_order(uint8_t i) { if (!_pitch_reversed) { switch (i) { case AP_MOTORS_MOT_1: // front right motor return 1; case AP_MOTORS_MOT_4: // back motor return 2; case AP_MOTORS_CH_TRI_YAW: // back servo return 3; case AP_MOTORS_MOT_2: // front left motor return 4; default: return 0; } } else { switch (i) { case AP_MOTORS_MOT_4: // front motor return 1; case AP_MOTORS_CH_TRI_YAW: // front servo return 2; case AP_MOTORS_MOT_1: // back right motor return 3; case AP_MOTORS_MOT_2: // back left motor return 4; default: return 0; } } } #endif // APM_BUILD_TYPE(APM_BUILD_UNKNOWN)