#include "RCOutput_PCA9685.h" #include #include #include #include #include #include #include #include #include #include #include #include "GPIO.h" #define PCA9685_RA_MODE1 0x00 #define PCA9685_RA_MODE2 0x01 #define PCA9685_RA_LED0_ON_L 0x06 #define PCA9685_RA_LED0_ON_H 0x07 #define PCA9685_RA_LED0_OFF_L 0x08 #define PCA9685_RA_LED0_OFF_H 0x09 #define PCA9685_RA_ALL_LED_ON_L 0xFA #define PCA9685_RA_ALL_LED_ON_H 0xFB #define PCA9685_RA_ALL_LED_OFF_L 0xFC #define PCA9685_RA_ALL_LED_OFF_H 0xFD #define PCA9685_RA_PRE_SCALE 0xFE #define PCA9685_MODE1_RESTART_BIT (1 << 7) #define PCA9685_MODE1_EXTCLK_BIT (1 << 6) #define PCA9685_MODE1_AI_BIT (1 << 5) #define PCA9685_MODE1_SLEEP_BIT (1 << 4) #define PCA9685_MODE1_SUB1_BIT (1 << 3) #define PCA9685_MODE1_SUB2_BIT (1 << 2) #define PCA9685_MODE1_SUB3_BIT (1 << 1) #define PCA9685_MODE1_ALLCALL_BIT (1 << 0) #define PCA9685_ALL_LED_OFF_H_SHUT (1 << 4) #define PCA9685_MODE2_INVRT_BIT (1 << 4) #define PCA9685_MODE2_OCH_BIT (1 << 3) #define PCA9685_MODE2_OUTDRV_BIT (1 << 2) #define PCA9685_MODE2_OUTNE1_BIT (1 << 1) #define PCA9685_MODE2_OUTNE0_BIT (1 << 0) #define PCA9685_LED_ON_H_ALWAYS_ON_BIT (1 << 4) #define PCA9685_LED_OFF_H_ALWAYS_OFF_BIT (1 << 4) /* * Drift for internal oscillator * see: https://github.com/ArduPilot/ardupilot/commit/50459bdca0b5a1adf95 * and https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library/issues/11 */ #define PCA9685_INTERNAL_CLOCK (1.04f * 25000000.f) using namespace Linux; #define PWM_CHAN_COUNT 16 extern const AP_HAL::HAL& hal; RCOutput_PCA9685::RCOutput_PCA9685(AP_HAL::OwnPtr dev, uint32_t external_clock, uint8_t channel_offset, int16_t oe_pin_number) : _dev(std::move(dev)), _enable_pin(nullptr), _frequency(50), _pulses_buffer(NEW_NOTHROW uint16_t[PWM_CHAN_COUNT - channel_offset]), _external_clock(external_clock), _channel_offset(channel_offset), _oe_pin_number(oe_pin_number) { if (_external_clock > 0) { _osc_clock = _external_clock; } else { _osc_clock = PCA9685_INTERNAL_CLOCK; } } RCOutput_PCA9685::~RCOutput_PCA9685() { delete [] _pulses_buffer; } void RCOutput_PCA9685::init() { reset_all_channels(); /* Set the initial frequency */ set_freq(0, 50); /* Enable PCA9685 PWM */ if (_oe_pin_number != -1) { _enable_pin = hal.gpio->channel(_oe_pin_number); _enable_pin->mode(HAL_GPIO_OUTPUT); _enable_pin->write(0); } } void RCOutput_PCA9685::reset_all_channels() { if (!_dev || !_dev->get_semaphore()->take(10)) { return; } uint8_t data[] = {PCA9685_RA_ALL_LED_ON_L, 0, 0, 0, 0}; _dev->transfer(data, sizeof(data), nullptr, 0); /* Wait for the last pulse to end */ hal.scheduler->delay(2); _dev->get_semaphore()->give(); } void RCOutput_PCA9685::set_freq(uint32_t chmask, uint16_t freq_hz) { /* Correctly finish last pulses */ for (int i = 0; i < (PWM_CHAN_COUNT - _channel_offset); i++) { write(i, _pulses_buffer[i]); } if (!_dev || !_dev->get_semaphore()->take(10)) { return; } /* Shutdown before sleeping. * see p.14 of PCA9685 product datasheet */ _dev->write_register(PCA9685_RA_ALL_LED_OFF_H, PCA9685_ALL_LED_OFF_H_SHUT); /* Put PCA9685 to sleep (required to write prescaler) */ _dev->write_register(PCA9685_RA_MODE1, PCA9685_MODE1_SLEEP_BIT); /* Calculate prescale and save frequency using this value: it may be * different from @freq_hz due to rounding/ceiling. We use ceil() rather * than round() so the resulting frequency is never greater than @freq_hz */ uint8_t prescale = ceilf(_osc_clock / (4096 * freq_hz)) - 1; _frequency = _osc_clock / (4096 * (prescale + 1)); /* Write prescale value to match frequency */ _dev->write_register(PCA9685_RA_PRE_SCALE, prescale); if (_external_clock) { /* Enable external clocking */ _dev->write_register(PCA9685_RA_MODE1, PCA9685_MODE1_SLEEP_BIT | PCA9685_MODE1_EXTCLK_BIT); } /* Restart the device to apply new settings and enable auto-incremented write */ _dev->write_register(PCA9685_RA_MODE1, PCA9685_MODE1_RESTART_BIT | PCA9685_MODE1_AI_BIT); _dev->get_semaphore()->give(); } uint16_t RCOutput_PCA9685::get_freq(uint8_t ch) { return _frequency; } void RCOutput_PCA9685::enable_ch(uint8_t ch) { } void RCOutput_PCA9685::disable_ch(uint8_t ch) { write(ch, 0); } bool RCOutput_PCA9685::force_safety_on() { if (!_dev || !_dev->get_semaphore()->take(10)) { return false; } /* Shutdown before sleeping. */ _dev->write_register(PCA9685_RA_ALL_LED_OFF_H, PCA9685_ALL_LED_OFF_H_SHUT); _dev->get_semaphore()->give(); return true; } void RCOutput_PCA9685::force_safety_off() { if (!_dev || !_dev->get_semaphore()->take(10)) { return; } /* Restart the device and enable auto-incremented write */ _dev->write_register(PCA9685_RA_MODE1, PCA9685_MODE1_RESTART_BIT | PCA9685_MODE1_AI_BIT); _dev->get_semaphore()->give(); } void RCOutput_PCA9685::write(uint8_t ch, uint16_t period_us) { if (ch >= (PWM_CHAN_COUNT - _channel_offset)) { return; } if (_is_gpio_mask & (1U << ch)) { return; } write_raw(ch, period_us); } void RCOutput_PCA9685::write_gpio(uint8_t chan, bool active) { if (chan >= (PWM_CHAN_COUNT - _channel_offset)) { return; } _is_gpio_mask |= (1U << chan); write_raw(chan, active); } void RCOutput_PCA9685::write_raw(uint8_t ch, uint16_t period_us) { /* Common code used by both write() and write_gpio() */ _pulses_buffer[ch] = period_us; _pending_write_mask |= (1U << ch); if (!_corking) { _corking = true; push(); } } void RCOutput_PCA9685::cork() { _corking = true; } void RCOutput_PCA9685::push() { if (!_corking) { return; } _corking = false; if (_pending_write_mask == 0) return; // Calculate the number of channels for this transfer. uint8_t max_ch = (sizeof(unsigned) * 8) - __builtin_clz(_pending_write_mask); uint8_t min_ch = __builtin_ctz(_pending_write_mask); /* * scratch buffer size is always for all the channels, but we write only * from min_ch to max_ch */ struct PACKED pwm_values { uint8_t reg; uint8_t data[PWM_CHAN_COUNT * 4]; } pwm_values; for (unsigned ch = min_ch; ch < max_ch; ch++) { uint16_t period_us = _pulses_buffer[ch]; uint16_t length = 0; if (period_us) { length = round((period_us * 4096) / (1000000.f / _frequency)) - 1; } uint8_t *d = &pwm_values.data[(ch - min_ch) * 4]; if (_is_gpio_mask & (1 << ch)) { *d++ = 0; // LEDn_ON_L *d++ = period_us ? PCA9685_LED_ON_H_ALWAYS_ON_BIT : 0; // LEDn_ON_H *d++ = 0; // LEDn_OFF_L *d++ = period_us ? 0 : PCA9685_LED_OFF_H_ALWAYS_OFF_BIT; // LEDn_OFF_H } else { *d++ = 0; // LEDn_ON_L *d++ = 0; // LEDn_ON_H *d++ = length & 0xFF; // LEDn_OFF_L *d++ = length >> 8; // LEDn_OFF_H } } if (!_dev || !_dev->get_semaphore()->take_nonblocking()) { return; } pwm_values.reg = PCA9685_RA_LED0_ON_L + 4 * (_channel_offset + min_ch); /* reg + all the channels we are going to write */ size_t payload_size = 1 + (max_ch - min_ch) * 4; _dev->transfer((uint8_t *)&pwm_values, payload_size, nullptr, 0); _dev->get_semaphore()->give(); _pending_write_mask = 0; } uint16_t RCOutput_PCA9685::read(uint8_t ch) { return _pulses_buffer[ch]; } void RCOutput_PCA9685::read(uint16_t* period_us, uint8_t len) { for (int i = 0; i < len; i++) { period_us[i] = read(0 + i); } }