/* * This file is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . */ #include "I2CDevice.h" #include #include #include "Util.h" #include "Scheduler.h" #include "hwdef/common/stm32_util.h" #include "ch.h" #include "hal.h" #if HAL_USE_I2C == TRUE static const struct I2CInfo { struct I2CDriver *i2c; uint8_t dma_channel_rx; uint8_t dma_channel_tx; ioline_t scl_line; ioline_t sda_line; } I2CD[] = { HAL_I2C_DEVICE_LIST }; using namespace ChibiOS; extern const AP_HAL::HAL& hal; I2CBus I2CDeviceManager::businfo[ARRAY_SIZE_SIMPLE(I2CD)]; #ifndef HAL_I2C_BUS_BASE #define HAL_I2C_BUS_BASE 0 #endif // default to 100kHz clock for maximum reliability. This can be // changed in hwdef.dat #ifndef HAL_I2C_MAX_CLOCK #define HAL_I2C_MAX_CLOCK 100000 #endif // values calculated with STM32CubeMX tool, PCLK=54MHz #define HAL_I2C_F7_100_TIMINGR 0x20404768 #define HAL_I2C_F7_400_TIMINGR 0x6000030D /* enable clear (toggling SCL) on I2C bus timeouts which leave SDA stuck low */ #ifndef HAL_I2C_CLEAR_ON_TIMEOUT #define HAL_I2C_CLEAR_ON_TIMEOUT 1 #endif // get a handle for DMA sharing DMA channels with other subsystems void I2CBus::dma_init(void) { chMtxObjectInit(&dma_lock); dma_handle = new Shared_DMA(I2CD[busnum].dma_channel_tx, I2CD[busnum].dma_channel_rx, FUNCTOR_BIND_MEMBER(&I2CBus::dma_allocate, void, Shared_DMA *), FUNCTOR_BIND_MEMBER(&I2CBus::dma_deallocate, void, Shared_DMA *)); } // Clear Bus to avoid bus lockup void I2CBus::clear_all() { for (uint8_t i=0; idelay_microseconds(10); } palSetLineMode(info.scl_line, mode_saved); } /* read SDA on a bus, to check if it may be stuck */ uint8_t I2CBus::read_sda(uint8_t busidx) { const struct I2CInfo &info = I2CD[busidx]; const iomode_t mode_saved = palReadLineMode(info.sda_line); palSetLineMode(info.sda_line, PAL_MODE_INPUT); uint8_t ret = palReadLine(info.sda_line); palSetLineMode(info.sda_line, mode_saved); return ret; } // setup I2C buses I2CDeviceManager::I2CDeviceManager(void) { for (uint8_t i=0; iprintf("I2C%u clock %ukHz\n", busnum, unsigned(bus.busclock/1000)); } } I2CDevice::~I2CDevice() { #if 0 printf("I2C device bus %u address 0x%02x closed\n", (unsigned)bus.busnum, (unsigned)_address); #endif free(pname); } /* allocate DMA channel */ void I2CBus::dma_allocate(Shared_DMA *ctx) { chMtxLock(&dma_lock); if (!i2c_started) { osalDbgAssert(I2CD[busnum].i2c->state == I2C_STOP, "i2cStart state"); i2cStart(I2CD[busnum].i2c, &i2ccfg); osalDbgAssert(I2CD[busnum].i2c->state == I2C_READY, "i2cStart state"); i2c_started = true; } chMtxUnlock(&dma_lock); } /* deallocate DMA channel */ void I2CBus::dma_deallocate(Shared_DMA *) { chMtxLock(&dma_lock); if (i2c_started) { osalDbgAssert(I2CD[busnum].i2c->state == I2C_READY, "i2cStart state"); i2cStop(I2CD[busnum].i2c); osalDbgAssert(I2CD[busnum].i2c->state == I2C_STOP, "i2cStart state"); i2c_started = false; } chMtxUnlock(&dma_lock); } bool I2CDevice::transfer(const uint8_t *send, uint32_t send_len, uint8_t *recv, uint32_t recv_len) { if (!bus.semaphore.check_owner()) { hal.console->printf("I2C: not owner of 0x%x\n", (unsigned)get_bus_id()); return false; } bus.dma_handle->lock(); #if defined(STM32F7) if (_use_smbus) { bus.i2ccfg.cr1 |= I2C_CR1_SMBHEN; } else { bus.i2ccfg.cr1 &= ~I2C_CR1_SMBHEN; } #else if (_use_smbus) { bus.i2ccfg.op_mode = OPMODE_SMBUS_HOST; } else { bus.i2ccfg.op_mode = OPMODE_I2C; } #endif if (_split_transfers) { /* splitting the transfer() into two pieces avoids a stop condition with SCL low which is not supported on some devices (such as LidarLite blue label) */ if (send && send_len) { if (!_transfer(send, send_len, nullptr, 0)) { bus.dma_handle->unlock(); return false; } } if (recv && recv_len) { if (!_transfer(nullptr, 0, recv, recv_len)) { bus.dma_handle->unlock(); return false; } } } else { // combined transfer if (!_transfer(send, send_len, recv, recv_len)) { bus.dma_handle->unlock(); return false; } } bus.dma_handle->unlock(); return true; } bool I2CDevice::_transfer(const uint8_t *send, uint32_t send_len, uint8_t *recv, uint32_t recv_len) { i2cAcquireBus(I2CD[bus.busnum].i2c); bus.bouncebuffer_setup(send, send_len, recv, recv_len); for(uint8_t i=0 ; i <= _retries; i++) { int ret; // calculate a timeout as twice the expected transfer time, and set as min of 4ms uint32_t timeout_ms = 1+2*(((8*1000000UL/bus.busclock)*MAX(send_len, recv_len))/1000); timeout_ms = MAX(timeout_ms, _timeout_ms); // if we are not using DMA then we may need to start the bus here bus.dma_allocate(bus.dma_handle); bus.i2c_active = true; osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY, "i2cStart state"); if(send_len == 0) { ret = i2cMasterReceiveTimeout(I2CD[bus.busnum].i2c, _address, recv, recv_len, MS2ST(timeout_ms)); } else { ret = i2cMasterTransmitTimeout(I2CD[bus.busnum].i2c, _address, send, send_len, recv, recv_len, MS2ST(timeout_ms)); } bus.i2c_active = false; if (ret != MSG_OK) { //restart the bus osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY || I2CD[bus.busnum].i2c->state == I2C_LOCKED, "i2cStart state"); i2cStop(I2CD[bus.busnum].i2c); osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_STOP, "i2cStart state"); i2cStart(I2CD[bus.busnum].i2c, &bus.i2ccfg); osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY, "i2cStart state"); } else { osalDbgAssert(I2CD[bus.busnum].i2c->state == I2C_READY, "i2cStart state"); bus.bouncebuffer_finish(send, recv, recv_len); i2cReleaseBus(I2CD[bus.busnum].i2c); return true; } #if HAL_I2C_CLEAR_ON_TIMEOUT if (ret == MSG_TIMEOUT && I2CBus::read_sda(bus.busnum) == 0) { I2CBus::clear_bus(bus.busnum); } #endif } bus.bouncebuffer_finish(send, recv, recv_len); i2cReleaseBus(I2CD[bus.busnum].i2c); return false; } bool I2CDevice::read_registers_multiple(uint8_t first_reg, uint8_t *recv, uint32_t recv_len, uint8_t times) { return false; } /* register a periodic callback */ AP_HAL::Device::PeriodicHandle I2CDevice::register_periodic_callback(uint32_t period_usec, AP_HAL::Device::PeriodicCb cb) { return bus.register_periodic_callback(period_usec, cb, this); } /* adjust a periodic callback */ bool I2CDevice::adjust_periodic_callback(AP_HAL::Device::PeriodicHandle h, uint32_t period_usec) { return bus.adjust_timer(h, period_usec); } AP_HAL::OwnPtr I2CDeviceManager::get_device(uint8_t bus, uint8_t address, uint32_t bus_clock, bool use_smbus, uint32_t timeout_ms) { bus -= HAL_I2C_BUS_BASE; if (bus >= ARRAY_SIZE_SIMPLE(I2CD)) { return AP_HAL::OwnPtr(nullptr); } auto dev = AP_HAL::OwnPtr(new I2CDevice(bus, address, bus_clock, use_smbus, timeout_ms)); return dev; } /* get mask of bus numbers for all configured I2C buses */ uint32_t I2CDeviceManager::get_bus_mask(void) const { return ((1U << ARRAY_SIZE_SIMPLE(I2CD)) - 1) << HAL_I2C_BUS_BASE; } /* get mask of bus numbers for all configured internal I2C buses */ uint32_t I2CDeviceManager::get_bus_mask_internal(void) const { // assume first bus is internal return get_bus_mask() & HAL_I2C_INTERNAL_MASK; } /* get mask of bus numbers for all configured external I2C buses */ uint32_t I2CDeviceManager::get_bus_mask_external(void) const { // assume first bus is internal return get_bus_mask() & ~HAL_I2C_INTERNAL_MASK; } #endif // HAL_USE_I2C