#include "AP_InertialSensor_Oilpan.h" // ADC channel mappings on for the APM Oilpan // Sensors: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ const uint8_t AP_InertialSensor_Oilpan::_sensors[6] = { 1, 2, 0, 4, 5, 6 }; // ADC result sign adjustment for sensors. const int8_t AP_InertialSensor_Oilpan::_sensor_signs[6] = { 1, -1, -1, 1, -1 , -1 }; // ADC channel reading the gyro temperature const uint8_t AP_InertialSensor_Oilpan::_gyro_temp_ch = 3; // Maximum possible value returned by an offset-corrected sensor channel const float AP_InertialSensor_Oilpan::_adc_constraint = 900; // ADC : Voltage reference 3.3v / 12bits(4096 steps) => 0.8mV/ADC step // ADXL335 Sensitivity(from datasheet) => 330mV/g, // 0.8mV/ADC step => 330/0.8 = 412 // Tested value : 418 // 1G in the raw data coming from the accelerometer // Value based on actual sample data from 20 boards const float AP_InertialSensor_Oilpan::_gravity = 423.8; ///< would like to use _gravity here, but cannot const float AP_InertialSensor_Oilpan::_accel_scale = 9.80665 / 423.8; #define ToRad(x) (x*0.01745329252) // *pi/180 // IDG500 Sensitivity (from datasheet) => 2.0mV/degree/s, // 0.8mV/ADC step => 0.8/3.33 = 0.4 // Tested values : 0.4026, ?, 0.4192 const float AP_InertialSensor_Oilpan::_gyro_gain_x = ToRad(0.4); const float AP_InertialSensor_Oilpan::_gyro_gain_y = ToRad(0.41); const float AP_InertialSensor_Oilpan::_gyro_gain_z = ToRad(0.41); /* ------ Public functions -------------------------------------------*/ AP_InertialSensor_Oilpan::AP_InertialSensor_Oilpan( AP_ADC * adc ) : _adc(adc) { _gyro.x = 0; _gyro.y = 0; _gyro.z = 0; _accel.x = 0; _accel.y = 0; _accel.z = 0; } void AP_InertialSensor_Oilpan::init( AP_PeriodicProcess * scheduler) { _adc->Init(scheduler); } bool AP_InertialSensor_Oilpan::update() { uint16_t adc_values[6]; _sample_time = _adc->Ch6(_sensors, adc_values); _temp = _adc->Ch(_gyro_temp_ch); _gyro.x = _gyro_gain_x * _sensor_signs[0] * _gyro_apply_std_offset( adc_values[0] ); _gyro.y = _gyro_gain_y * _sensor_signs[1] * _gyro_apply_std_offset( adc_values[1] ); _gyro.z = _gyro_gain_z * _sensor_signs[2] * _gyro_apply_std_offset( adc_values[2] ); _accel.x = _accel_scale * _sensor_signs[3] * _accel_apply_std_offset( adc_values[3] ); _accel.y = _accel_scale * _sensor_signs[4] * _accel_apply_std_offset( adc_values[4] ); _accel.z = _accel_scale * _sensor_signs[5] * _accel_apply_std_offset( adc_values[5] ); return true; } float AP_InertialSensor_Oilpan::gx() { return _gyro.x; } float AP_InertialSensor_Oilpan::gy() { return _gyro.y; } float AP_InertialSensor_Oilpan::gz() { return _gyro.z; } void AP_InertialSensor_Oilpan::get_gyros( float * g ) { g[0] = _gyro.x; g[1] = _gyro.y; g[2] = _gyro.z; } float AP_InertialSensor_Oilpan::ax() { return _accel.x; } float AP_InertialSensor_Oilpan::ay() { return _accel.y; } float AP_InertialSensor_Oilpan::az() { return _accel.z; } void AP_InertialSensor_Oilpan::get_accels( float * a ) { a[0] = _accel.x; a[1] = _accel.y; a[2] = _accel.z; } void AP_InertialSensor_Oilpan::get_sensors( float * sensors ) { sensors[0] = _gyro.x; sensors[1] = _gyro.y; sensors[2] = _gyro.z; sensors[3] = _accel.x; sensors[4] = _accel.y; sensors[5] = _accel.z; } float AP_InertialSensor_Oilpan::temperature() { return _temp; } uint32_t AP_InertialSensor_Oilpan::sample_time() { return _sample_time; } void AP_InertialSensor_Oilpan::reset_sample_time() { } /* ------ Private functions -------------------------------------------*/ float AP_InertialSensor_Oilpan::_gyro_apply_std_offset( uint16_t adc_value ) { /* Magic number from AP_ADC_Oilpan.h */ return ((float) adc_value ) - 1658.0f; } float AP_InertialSensor_Oilpan::_accel_apply_std_offset( uint16_t adc_value ) { /* Magic number from AP_ADC_Oilpan.h */ return ((float) adc_value ) - 2041.0f; }