/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* backend driver for airspeed from a I2C MS4525D0 sensor */ #include "AP_Airspeed_MS4525.h" #include #include #include #include #include #include #include extern const AP_HAL::HAL &hal; #define MS4525D0_I2C_ADDR1 0x28 #define MS4525D0_I2C_ADDR2 0x36 #define MS4525D0_I2C_ADDR3 0x46 AP_Airspeed_MS4525::AP_Airspeed_MS4525(AP_Airspeed &_frontend, uint8_t _instance) : AP_Airspeed_Backend(_frontend, _instance) { } // probe for a sensor bool AP_Airspeed_MS4525::probe(uint8_t bus, uint8_t address) { _dev = hal.i2c_mgr->get_device(bus, address); if (!_dev) { return false; } WITH_SEMAPHORE(_dev->get_semaphore()); // lots of retries during probe _dev->set_retries(10); _measure(); hal.scheduler->delay(10); _collect(); return _last_sample_time_ms != 0; } // probe and initialise the sensor bool AP_Airspeed_MS4525::init() { static const uint8_t addresses[] = { MS4525D0_I2C_ADDR1, MS4525D0_I2C_ADDR2, MS4525D0_I2C_ADDR3 }; if (bus_is_confgured()) { // the user has configured a specific bus for (uint8_t addr : addresses) { if (probe(get_bus(), addr)) { goto found_sensor; } } } else { // if bus is not configured then fall back to the old // behaviour of probing all buses, external first FOREACH_I2C_EXTERNAL(bus) { for (uint8_t addr : addresses) { if (probe(bus, addr)) { goto found_sensor; } } } FOREACH_I2C_INTERNAL(bus) { for (uint8_t addr : addresses) { if (probe(bus, addr)) { goto found_sensor; } } } } GCS_SEND_TEXT(MAV_SEVERITY_INFO, "MS4525[%u]: no sensor found", get_instance()); return false; found_sensor: _dev->set_device_type(uint8_t(DevType::MS4525)); set_bus_id(_dev->get_bus_id()); GCS_SEND_TEXT(MAV_SEVERITY_INFO, "MS4525[%u]: Found bus %u addr 0x%02x", get_instance(), _dev->bus_num(), _dev->get_bus_address()); // drop to 2 retries for runtime _dev->set_retries(2); _dev->register_periodic_callback(20000, FUNCTOR_BIND_MEMBER(&AP_Airspeed_MS4525::_timer, void)); return true; } // start a measurement void AP_Airspeed_MS4525::_measure() { _measurement_started_ms = 0; uint8_t cmd = 0; if (_dev->transfer(&cmd, 1, nullptr, 0)) { _measurement_started_ms = AP_HAL::millis(); } } /* this equation is an inversion of the equation in the pressure transfer function figure on page 4 of the datasheet We negate the result so that positive differential pressures are generated when the bottom port is used as the static port on the pitot and top port is used as the dynamic port */ float AP_Airspeed_MS4525::_get_pressure(int16_t dp_raw) const { const float P_max = get_psi_range(); const float P_min = - P_max; const float PSI_to_Pa = 6894.757f; float diff_press_PSI = -((dp_raw - 0.1f*16383) * (P_max-P_min)/(0.8f*16383) + P_min); float press = diff_press_PSI * PSI_to_Pa; return press; } /* convert raw temperature to temperature in degrees C */ float AP_Airspeed_MS4525::_get_temperature(int16_t dT_raw) const { float temp = ((200.0f * dT_raw) / 2047) - 50; return temp; } // read the values from the sensor void AP_Airspeed_MS4525::_collect() { uint8_t data[4]; uint8_t data2[4]; _measurement_started_ms = 0; if (!_dev->transfer(nullptr, 0, data, sizeof(data))) { return; } // reread the data, so we can attempt to detect bad inputs if (!_dev->transfer(nullptr, 0, data2, sizeof(data2))) { return; } uint8_t status = (data[0] & 0xC0) >> 6; // only check the status on the first read, the second read is expected to be stale if (status == 2 || status == 3) { return; } int16_t dp_raw, dT_raw; dp_raw = (data[0] << 8) + data[1]; dp_raw = 0x3FFF & dp_raw; dT_raw = (data[2] << 8) + data[3]; dT_raw = (0xFFE0 & dT_raw) >> 5; int16_t dp_raw2, dT_raw2; dp_raw2 = (data2[0] << 8) + data2[1]; dp_raw2 = 0x3FFF & dp_raw2; dT_raw2 = (data2[2] << 8) + data2[3]; dT_raw2 = (0xFFE0 & dT_raw2) >> 5; // reject any values that are the absolute minimum or maximums these // can happen due to gnd lifts or communication errors on the bus if (dp_raw == 0x3FFF || dp_raw == 0 || dT_raw == 0x7FF || dT_raw == 0 || dp_raw2 == 0x3FFF || dp_raw2 == 0 || dT_raw2 == 0x7FF || dT_raw2 == 0) { return; } // reject any double reads where the value has shifted in the upper more than // 0xFF if (abs(dp_raw - dp_raw2) > 0xFF || abs(dT_raw - dT_raw2) > 0xFF) { return; } float press = _get_pressure(dp_raw); float press2 = _get_pressure(dp_raw2); float temp = _get_temperature(dT_raw); float temp2 = _get_temperature(dT_raw2); if (!disable_voltage_correction()) { _voltage_correction(press, temp); _voltage_correction(press2, temp2); } WITH_SEMAPHORE(sem); _press_sum += press + press2; _temp_sum += temp + temp2; _press_count += 2; _temp_count += 2; _last_sample_time_ms = AP_HAL::millis(); } /** correct for 5V rail voltage if the system_power ORB topic is available See http://uav.tridgell.net/MS4525/MS4525-offset.png for a graph of offset versus voltage for 3 sensors */ void AP_Airspeed_MS4525::_voltage_correction(float &diff_press_pa, float &temperature) { const float slope = 65.0f; const float temp_slope = 0.887f; /* apply a piecewise linear correction within range given by above graph */ float voltage_diff = hal.analogin->board_voltage() - 5.0f; voltage_diff = constrain_float(voltage_diff, -0.7f, 0.5f); diff_press_pa -= voltage_diff * slope; temperature -= voltage_diff * temp_slope; } // 50Hz timer void AP_Airspeed_MS4525::_timer() { if (_measurement_started_ms == 0) { _measure(); return; } if ((AP_HAL::millis() - _measurement_started_ms) > 10) { _collect(); // start a new measurement _measure(); } } // return the current differential_pressure in Pascal bool AP_Airspeed_MS4525::get_differential_pressure(float &pressure) { WITH_SEMAPHORE(sem); if ((AP_HAL::millis() - _last_sample_time_ms) > 100) { return false; } if (_press_count > 0) { _pressure = _press_sum / _press_count; _press_count = 0; _press_sum = 0; } pressure = _pressure; return true; } // return the current temperature in degrees C, if available bool AP_Airspeed_MS4525::get_temperature(float &temperature) { WITH_SEMAPHORE(sem); if ((AP_HAL::millis() - _last_sample_time_ms) > 100) { return false; } if (_temp_count > 0) { _temperature = _temp_sum / _temp_count; _temp_count = 0; _temp_sum = 0; } temperature = _temperature; return true; }