/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- /* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <AP_Common.h> #include <AP_Progmem.h> #include <AP_Param.h> #include <AP_Math.h> #include <AP_HAL.h> #include <AP_HAL_AVR.h> #include <AP_HAL_AVR_SITL.h> #include <AP_HAL_Linux.h> #include <AP_HAL_Empty.h> #include <AP_ADC.h> #include <AP_Declination.h> #include <AP_ADC_AnalogSource.h> #include <Filter.h> #include <AP_Buffer.h> #include <AP_Airspeed.h> #include <AP_Vehicle.h> #include <AP_Notify.h> #include <DataFlash.h> #include <GCS_MAVLink.h> #include <AP_GPS.h> #include <AP_GPS_Glitch.h> #include <AP_AHRS.h> #include <SITL.h> #include <AP_Compass.h> #include <AP_Baro.h> #include <AP_InertialSensor.h> #include <AP_InertialNav.h> #include <AP_NavEKF.h> #include <AP_Mission.h> #include <Parameters.h> #include <stdio.h> #include <getopt.h> #include <errno.h> #include "LogReader.h" const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER; AP_Param param_loader(var_info, 4096); static Parameters g; static AP_InertialSensor_HIL ins; static AP_Baro_HIL barometer; static AP_GPS_HIL gps_driver; static GPS *g_gps = &gps_driver; static AP_Compass_HIL compass; static AP_AHRS_NavEKF ahrs(ins, barometer, g_gps); static GPS_Glitch gps_glitch(g_gps); static AP_InertialNav inertial_nav(ahrs, barometer, g_gps, gps_glitch); static AP_Vehicle::FixedWing aparm; static AP_Airspeed airspeed(aparm); #if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL SITL sitl; #endif static const NavEKF &NavEKF = ahrs.get_NavEKF(); static LogReader LogReader(ins, barometer, compass, g_gps, airspeed); static FILE *plotf; static FILE *plotf2; static FILE *ekf1f; static FILE *ekf2f; static FILE *ekf3f; static FILE *ekf4f; static bool done_parameters; static bool done_baro_init; static bool done_home_init; static uint16_t update_rate; static uint8_t num_user_parameters; static struct { char name[17]; float value; } user_parameters[100]; static void usage(void) { ::printf("Options:\n"); ::printf(" -rRATE set IMU rate in Hz\n"); ::printf(" -pNAME=VALUE set parameter NAME to VALUE\n"); ::printf(" -aMASK set accel mask (1=accel1 only, 2=accel2 only, 3=both)\n"); ::printf(" -gMASK set gyro mask (1=gyro1 only, 2=gyro2 only, 3=both)\n"); } void setup() { ::printf("Starting\n"); const char *filename = "log.bin"; uint8_t argc; char * const *argv; int opt; hal.util->commandline_arguments(argc, argv); while ((opt = getopt(argc, argv, "r:p:ha:g:")) != -1) { switch (opt) { case 'h': usage(); exit(0); case 'r': update_rate = strtol(optarg, NULL, 0); break; case 'g': LogReader.set_gyro_mask(strtol(optarg, NULL, 0)); break; case 'a': LogReader.set_accel_mask(strtol(optarg, NULL, 0)); break; case 'p': char *eq = strchr(optarg, '='); if (eq == NULL) { ::printf("Usage: -p NAME=VALUE\n"); exit(1); } *eq++ = 0; strncpy(user_parameters[num_user_parameters].name, optarg, 16); user_parameters[num_user_parameters].value = atof(eq); num_user_parameters++; if (num_user_parameters >= sizeof(user_parameters)/sizeof(user_parameters[0])) { ::printf("Too many user parameters\n"); exit(1); } break; } } argv += optind; argc -= optind; if (argc > 0) { filename = argv[0]; } hal.console->printf("Processing log %s\n", filename); if (update_rate != 0) { hal.console->printf("Using an update rate of %u Hz\n", update_rate); } load_parameters(); if (!LogReader.open_log(filename)) { perror(filename); exit(1); } LogReader.wait_type(LOG_GPS_MSG); LogReader.wait_type(LOG_IMU_MSG); LogReader.wait_type(LOG_GPS_MSG); LogReader.wait_type(LOG_IMU_MSG); ahrs.set_compass(&compass); ahrs.set_fly_forward(true); ahrs.set_wind_estimation(true); ahrs.set_correct_centrifugal(true); barometer.init(); barometer.setHIL(0); barometer.read(); compass.init(); inertial_nav.init(); switch (update_rate) { case 0: case 50: ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_50HZ); break; case 100: ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_100HZ); break; case 200: ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_200HZ); break; case 400: ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_400HZ); break; } plotf = fopen("plot.dat", "w"); plotf2 = fopen("plot2.dat", "w"); ekf1f = fopen("EKF1.dat", "w"); ekf2f = fopen("EKF2.dat", "w"); ekf3f = fopen("EKF3.dat", "w"); ekf4f = fopen("EKF4.dat", "w"); fprintf(plotf, "time SIM.Roll SIM.Pitch SIM.Yaw BAR.Alt FLIGHT.Roll FLIGHT.Pitch FLIGHT.Yaw FLIGHT.dN FLIGHT.dE FLIGHT.Alt DCM.Roll DCM.Pitch DCM.Yaw EKF.Roll EKF.Pitch EKF.Yaw INAV.dN INAV.dE INAV.Alt EKF.dN EKF.dE EKF.Alt\n"); fprintf(plotf2, "time E1 E2 E3 VN VE VD PN PE PD GX GY GZ WN WE MN ME MD MX MY MZ E1ref E2ref E3ref\n"); fprintf(ekf1f, "timestamp TimeMS Roll Pitch Yaw VN VE VD PN PE PD GX GY GZ\n"); fprintf(ekf2f, "timestamp TimeMS AX AY AZ VWN VWE MN ME MD MX MY MZ\n"); fprintf(ekf3f, "timestamp TimeMS IVN IVE IVD IPN IPE IPD IMX IMY IMZ IVT\n"); fprintf(ekf4f, "timestamp TimeMS SVN SVE SVD SPN SPE SPD SMX SMY SMZ SVT\n"); ahrs.set_ekf_use(true); ::printf("Waiting for InertialNav to start\n"); while (!ahrs.have_inertial_nav()) { uint8_t type; if (!LogReader.update(type)) break; read_sensors(type); if (type == LOG_GPS_MSG && g_gps->status() >= GPS::GPS_OK_FIX_3D && done_baro_init && !done_home_init) { ::printf("GPS Lock at %.7f %.7f %.2fm time=%.1f seconds\n", g_gps->latitude*1.0e-7f, g_gps->longitude*1.0e-7f, g_gps->altitude_cm*0.01f, hal.scheduler->millis()*0.001f); ahrs.set_home(g_gps->latitude, g_gps->longitude, g_gps->altitude_cm); compass.set_initial_location(g_gps->latitude, g_gps->longitude); inertial_nav.setup_home_position(); done_home_init = true; } } ::printf("InertialNav started\n"); if (!ahrs.have_inertial_nav()) { ::printf("Failed to start NavEKF\n"); exit(1); } } /* setup user -p parameters */ static void set_user_parameters(void) { for (uint8_t i=0; i<num_user_parameters; i++) { if (!LogReader.set_parameter(user_parameters[i].name, user_parameters[i].value)) { ::printf("Failed to set parameter %s to %f\n", user_parameters[i].name, user_parameters[i].value); exit(1); } } } static void read_sensors(uint8_t type) { if (!done_parameters && type != LOG_FORMAT_MSG && type != LOG_PARAMETER_MSG) { done_parameters = true; set_user_parameters(); } if (type == LOG_GPS_MSG) { g_gps->update(); if (g_gps->status() >= GPS::GPS_OK_FIX_3D) { ahrs.estimate_wind(); } } else if (type == LOG_IMU_MSG) { uint32_t update_delta_usec = 1e6 / update_rate; uint8_t update_count = update_rate>0?update_rate/50:1; for (uint8_t i=0; i<update_count; i++) { ahrs.update(); if (ahrs.get_home().lat != 0) { inertial_nav.update(ins.get_delta_time()); } hal.scheduler->stop_clock(hal.scheduler->micros() + (i+1)*update_delta_usec); ins.set_gyro(0, ins.get_gyro()); ins.set_accel(0, ins.get_accel()); } } else if ((type == LOG_PLANE_COMPASS_MSG && LogReader.vehicle == LogReader::VEHICLE_PLANE) || (type == LOG_COPTER_COMPASS_MSG && LogReader.vehicle == LogReader::VEHICLE_COPTER) || (type == LOG_ROVER_COMPASS_MSG && LogReader.vehicle == LogReader::VEHICLE_ROVER)) { compass.read(); } else if (type == LOG_PLANE_AIRSPEED_MSG && LogReader.vehicle == LogReader::VEHICLE_PLANE) { ahrs.set_airspeed(&airspeed); } else if (type == LOG_BARO_MSG) { barometer.read(); if (!done_baro_init) { done_baro_init = true; ::printf("Barometer initialised\n"); barometer.update_calibration(); } } } void loop() { while (true) { uint8_t type; if (!LogReader.update(type)) { ::printf("End of log at %.1f seconds\n", hal.scheduler->millis()*0.001f); fclose(plotf); exit(0); } read_sensors(type); if ((type == LOG_PLANE_ATTITUDE_MSG && LogReader.vehicle == LogReader::VEHICLE_PLANE) || (type == LOG_COPTER_ATTITUDE_MSG && LogReader.vehicle == LogReader::VEHICLE_COPTER) || (type == LOG_ROVER_ATTITUDE_MSG && LogReader.vehicle == LogReader::VEHICLE_ROVER)) { Vector3f ekf_euler; Vector3f velNED; Vector3f posNED; Vector3f gyroBias; Vector3f accelBias; Vector3f windVel; Vector3f magNED; Vector3f magXYZ; Vector3f DCM_attitude; Vector3f ekf_relpos; Vector3f velInnov; Vector3f posInnov; Vector3f magInnov; float tasInnov; Vector3f velVar; Vector3f posVar; Vector3f magVar; float tasVar; const Matrix3f &dcm_matrix = ((AP_AHRS_DCM)ahrs).get_dcm_matrix(); dcm_matrix.to_euler(&DCM_attitude.x, &DCM_attitude.y, &DCM_attitude.z); NavEKF.getEulerAngles(ekf_euler); NavEKF.getVelNED(velNED); NavEKF.getPosNED(posNED); NavEKF.getGyroBias(gyroBias); NavEKF.getAccelBias(accelBias); NavEKF.getWind(windVel); NavEKF.getMagNED(magNED); NavEKF.getMagXYZ(magXYZ); NavEKF.getInnovations(velInnov, posInnov, magInnov, tasInnov); NavEKF.getVariances(velVar, posVar, magVar, tasVar); NavEKF.getPosNED(ekf_relpos); Vector3f inav_pos = inertial_nav.get_position() * 0.01f; float temp = degrees(ekf_euler.z); if (temp < 0.0f) temp = temp + 360.0f; fprintf(plotf, "%.3f %.1f %.1f %.1f %.2f %.1f %.1f %.1f %.2f %.2f %.2f %.1f %.1f %.1f %.1f %.1f %.1f %.2f %.2f %.2f %.2f %.2f %.2f\n", hal.scheduler->millis() * 0.001f, LogReader.get_sim_attitude().x, LogReader.get_sim_attitude().y, LogReader.get_sim_attitude().z, barometer.get_altitude(), LogReader.get_attitude().x, LogReader.get_attitude().y, LogReader.get_attitude().z, LogReader.get_inavpos().x, LogReader.get_inavpos().y, LogReader.get_relalt(), degrees(DCM_attitude.x), degrees(DCM_attitude.y), degrees(DCM_attitude.z), degrees(ekf_euler.x), degrees(ekf_euler.y), degrees(ekf_euler.z), inav_pos.x, inav_pos.y, inav_pos.z, ekf_relpos.x, ekf_relpos.y, -ekf_relpos.z); fprintf(plotf2, "%.3f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f\n", hal.scheduler->millis() * 0.001f, degrees(ekf_euler.x), degrees(ekf_euler.y), temp, velNED.x, velNED.y, velNED.z, posNED.x, posNED.y, posNED.z, 60*degrees(gyroBias.x), 60*degrees(gyroBias.y), 60*degrees(gyroBias.z), windVel.x, windVel.y, magNED.x, magNED.y, magNED.z, magXYZ.x, magXYZ.y, magXYZ.z, LogReader.get_attitude().x, LogReader.get_attitude().y, LogReader.get_attitude().z); // define messages for EKF1 data packet int16_t roll = (int16_t)(100*degrees(ekf_euler.x)); // roll angle (centi-deg) int16_t pitch = (int16_t)(100*degrees(ekf_euler.y)); // pitch angle (centi-deg) uint16_t yaw = (uint16_t)wrap_360_cd(100*degrees(ekf_euler.z)); // yaw angle (centi-deg) float velN = (float)(velNED.x); // velocity North (m/s) float velE = (float)(velNED.y); // velocity East (m/s) float velD = (float)(velNED.z); // velocity Down (m/s) float posN = (float)(posNED.x); // metres North float posE = (float)(posNED.y); // metres East float posD = (float)(posNED.z); // metres Down int16_t gyrX = (int16_t)(6000*degrees(gyroBias.x)); // centi-deg/min int16_t gyrY = (int16_t)(6000*degrees(gyroBias.y)); // centi-deg/min int16_t gyrZ = (int16_t)(6000*degrees(gyroBias.z)); // centi-deg/min // print EKF1 data packet fprintf(ekf1f, "%.3f %u %d %d %u %.2f %.2f %.2f %.2f %.2f %.2f %d %d %d\n", hal.scheduler->millis() * 0.001f, hal.scheduler->millis(), roll, pitch, yaw, velN, velE, velD, posN, posE, posD, gyrX, gyrY, gyrZ); // define messages for EKF2 data packet int8_t accX = (int8_t)(100*accelBias.x); int8_t accY = (int8_t)(100*accelBias.y); int8_t accZ = (int8_t)(100*accelBias.z); int16_t windN = (int16_t)(100*windVel.x); int16_t windE = (int16_t)(100*windVel.y); int16_t magN = (int16_t)(magNED.x); int16_t magE = (int16_t)(magNED.y); int16_t magD = (int16_t)(magNED.z); int16_t magX = (int16_t)(magXYZ.x); int16_t magY = (int16_t)(magXYZ.y); int16_t magZ = (int16_t)(magXYZ.z); // print EKF2 data packet fprintf(ekf2f, "%.3f %d %d %d %d %d %d %d %d %d %d %d %d\n", hal.scheduler->millis() * 0.001f, hal.scheduler->millis(), accX, accY, accZ, windN, windE, magN, magE, magD, magX, magY, magZ); // define messages for EKF3 data packet int16_t innovVN = (int16_t)(100*velInnov.x); int16_t innovVE = (int16_t)(100*velInnov.y); int16_t innovVD = (int16_t)(100*velInnov.z); int16_t innovPN = (int16_t)(100*posInnov.x); int16_t innovPE = (int16_t)(100*posInnov.y); int16_t innovPD = (int16_t)(100*posInnov.z); int16_t innovMX = (int16_t)(magInnov.x); int16_t innovMY = (int16_t)(magInnov.y); int16_t innovMZ = (int16_t)(magInnov.z); int16_t innovVT = (int16_t)(100*tasInnov); // print EKF3 data packet fprintf(ekf3f, "%.3f %d %d %d %d %d %d %d %d %d %d %d\n", hal.scheduler->millis() * 0.001f, hal.scheduler->millis(), innovVN, innovVE, innovVD, innovPN, innovPE, innovPD, innovMX, innovMY, innovMZ, innovVT); // define messages for EKF4 data packet int16_t sqrtvarVN = (int16_t)(100*sqrtf(velVar.x)); int16_t sqrtvarVE = (int16_t)(100*sqrtf(velVar.y)); int16_t sqrtvarVD = (int16_t)(100*sqrtf(velVar.z)); int16_t sqrtvarPN = (int16_t)(100*sqrtf(posVar.x)); int16_t sqrtvarPE = (int16_t)(100*sqrtf(posVar.y)); int16_t sqrtvarPD = (int16_t)(100*sqrtf(posVar.z)); int16_t sqrtvarMX = (int16_t)(sqrtf(magVar.x)); int16_t sqrtvarMY = (int16_t)(sqrtf(magVar.y)); int16_t sqrtvarMZ = (int16_t)(sqrtf(magVar.z)); int16_t sqrtvarVT = (int16_t)(100*sqrtf(tasVar)); // print EKF4 data packet fprintf(ekf4f, "%.3f %d %d %d %d %d %d %d %d %d %d %d\n", hal.scheduler->millis() * 0.001f, hal.scheduler->millis(), sqrtvarVN, sqrtvarVE, sqrtvarVD, sqrtvarPN, sqrtvarPE, sqrtvarPD, sqrtvarMX, sqrtvarMY, sqrtvarMZ, sqrtvarVT); } } } AP_HAL_MAIN();