// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- /// @file AP_IMU_Shim.h /// @brief IMU shim driver, used when the IMU data is coming from somewhere else. #ifndef AP_IMU_Shim_h #define AP_IMU_Shim_h #include "IMU.h" #define AP_IMU_SHIM_UPDATE_MICROS 10000 // 10000 micrxos = 10 ms = 100hz class AP_IMU_Shim : public IMU { public: AP_IMU_Shim(void) { _product_id = AP_PRODUCT_ID_NONE; _first_sample_time_micros = 0; _last_sample_time_micros = micros(); } /// @name IMU protocol //@{ virtual void init(Start_style style = COLD_START, void (*callback)(unsigned long t) = delay, void (*flash_leds_cb)(bool on) = NULL, AP_PeriodicProcess * scheduler = NULL) { if( scheduler != NULL ) { scheduler->register_process( AP_IMU_Shim::read ); } }; virtual void init_accel(void (*callback)(unsigned long t) = delay, void (*flash_leds_cb)(bool on) = NULL) { }; virtual void init_gyro(void (*callback)(unsigned long t) = delay, void (*flash_leds_cb)(bool on) = NULL) { }; virtual bool update(void) { bool updated = _updated; _updated = false; _count = 0; _sample_time = _last_sample_time_micros - _first_sample_time_micros; _first_sample_time_micros = _last_sample_time_micros; return updated; } //@} virtual bool new_data_available(void) { return _count > 0; } /// Get number of samples read from the sensors /// @returns number of samples read from the sensors uint16_t num_samples_available(void) { return _count; } float gx() { return 0; } float gy() { return 0; } float gz() { return 0; } float ax() { return 0; } float ay() { return 0; } float az() { return 0; } void ax(const int v) { } void ay(const int v) { } void az(const int v) { } /// Set the gyro vector. ::update will return /// true once after this call. /// /// @param v The new gyro vector. /// void set_gyro(Vector3f v) { _gyro = v; _updated = true; } /// Set the accelerometer vector. ::update will return /// true once after this call. /// /// @param v The new accelerometer vector. /// void set_accel(Vector3f v) { _accel = v; _updated = true; } // dummy save method void save(void) { } float get_gyro_drift_rate(void) { return 0; } private: // read function that pretends to capture new data static void read(uint32_t tnow) { _last_sample_time_micros = tnow; _count++; } static uint16_t _count; // number of samples captured static uint32_t _first_sample_time_micros; // time first sample began (equal to the last sample time of the previous iteration) static uint32_t _last_sample_time_micros; // time that the latest sample was captured /// set true when new data is delivered bool _updated; }; #endif