#include "AP_Compass_SITL.h" #if AP_COMPASS_SITL_ENABLED #include extern const AP_HAL::HAL& hal; AP_Compass_SITL::AP_Compass_SITL() : _sitl(AP::sitl()) { if (_sitl != nullptr) { for (uint8_t i=0; imag_devid[i]; if (dev_id == 0) { continue; } uint8_t instance; if (!register_compass(dev_id, instance)) { continue; } else if (_num_compassmag_ofs[i]); } } // we want to simulate a calibrated compass by default, so set // scale to 1 AP_Param::set_default_by_name("COMPASS_SCALE", 1); AP_Param::set_default_by_name("COMPASS_SCALE2", 1); AP_Param::set_default_by_name("COMPASS_SCALE3", 1); // make first compass external set_external(_compass_instance[0], true); hal.scheduler->register_timer_process(FUNCTOR_BIND(this, &AP_Compass_SITL::_timer, void)); } } /* create correction matrix for diagnonals and off-diagonals */ void AP_Compass_SITL::_setup_eliptical_correcion(uint8_t i) { Vector3f diag = _sitl->mag_diag[i].get(); if (diag.is_zero()) { diag = {1,1,1}; } const Vector3f &diagonals = diag; const Vector3f &offdiagonals = _sitl->mag_offdiag[i]; if (diagonals == _last_dia && offdiagonals == _last_odi) { return; } _eliptical_corr = Matrix3f(diagonals.x, offdiagonals.x, offdiagonals.y, offdiagonals.x, diagonals.y, offdiagonals.z, offdiagonals.y, offdiagonals.z, diagonals.z); if (!_eliptical_corr.invert()) { _eliptical_corr.identity(); } _last_dia = diag; _last_odi = offdiagonals; } void AP_Compass_SITL::_timer() { // TODO: Refactor delay buffer with AP_Baro_SITL. // Sampled at 100Hz uint32_t now = AP_HAL::millis(); if ((now - _last_sample_time) < 10) { return; } _last_sample_time = now; // calculate sensor noise and add to 'truth' field in body frame // units are milli-Gauss Vector3f noise = rand_vec3f() * _sitl->mag_noise; Vector3f new_mag_data = _sitl->state.bodyMagField + noise; // add delay uint32_t best_time_delta = 1000; // initialise large time representing buffer entry closest to current time - delay. uint8_t best_index = 0; // initialise number representing the index of the entry in buffer closest to delay. // storing data from sensor to buffer if (now - last_store_time >= 10) { // store data every 10 ms. last_store_time = now; if (store_index > buffer_length-1) { // reset buffer index if index greater than size of buffer store_index = 0; } buffer[store_index].data = new_mag_data; // add data to current index buffer[store_index].time = last_store_time; // add time to current index store_index = store_index + 1; // increment index } // return delayed measurement uint32_t delayed_time = now - _sitl->mag_delay; // get time corresponding to delay // find data corresponding to delayed time in buffer for (uint8_t i=0; i<=buffer_length-1; i++) { // find difference between delayed time and time stamp in buffer uint32_t time_delta = abs((int32_t)(delayed_time - buffer[i].time)); // if this difference is smaller than last delta, store this time if (time_delta < best_time_delta) { best_index= i; best_time_delta = time_delta; } } if (best_time_delta < 1000) { // only output stored state if < 1 sec retrieval error new_mag_data = buffer[best_index].data; } for (uint8_t i=0; i<_num_compass; i++) { _setup_eliptical_correcion(i); Vector3f f = (_eliptical_corr * new_mag_data) - _sitl->mag_ofs[i].get(); // rotate compass f.rotate_inverse((enum Rotation)_sitl->mag_orient[i].get()); f.rotate(get_board_orientation()); // scale the compass to simulate sensor scale factor errors f *= _sitl->mag_scaling[i]; switch (_sitl->mag_fail[i]) { case 0: accumulate_sample(f, _compass_instance[i], 10); _last_data[i] = f; break; case 1: // no data break; case 2: // frozen compass accumulate_sample(_last_data[i], _compass_instance[i], 10); break; } } } void AP_Compass_SITL::read() { for (uint8_t i=0; i<_num_compass; i++) { drain_accumulated_samples(_compass_instance[i], nullptr); } } #endif // AP_COMPASS_SITL_ENABLED