/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ // Copyright 2012 Andrew Tridgell, all rights reserved. // Refactored by Jonathan Challinger #pragma once #include <cmath> #if MATH_CHECK_INDEXES #include <assert.h> #endif #include <math.h> class Quaternion { public: float q1, q2, q3, q4; // constructor creates a quaternion equivalent // to roll=0, pitch=0, yaw=0 Quaternion() { q1 = 1; q2 = q3 = q4 = 0; } // setting constructor Quaternion(const float _q1, const float _q2, const float _q3, const float _q4) : q1(_q1), q2(_q2), q3(_q3), q4(_q4) { } // setting constructor Quaternion(const float _q[4]) : q1(_q[0]), q2(_q[1]), q3(_q[2]), q4(_q[3]) { } // function call operator void operator()(const float _q1, const float _q2, const float _q3, const float _q4) { q1 = _q1; q2 = _q2; q3 = _q3; q4 = _q4; } // check if any elements are NAN bool is_nan(void) const WARN_IF_UNUSED { return isnan(q1) || isnan(q2) || isnan(q3) || isnan(q4); } // return the rotation matrix equivalent for this quaternion void rotation_matrix(Matrix3f &m) const; // return the rotation matrix equivalent for this quaternion after normalization void rotation_matrix_norm(Matrix3f &m) const; // return the rotation matrix equivalent for this quaternion void from_rotation_matrix(const Matrix3f &m); // create a quaternion from a given rotation void from_rotation(enum Rotation rotation); // rotate this quaternion by the given rotation void rotate(enum Rotation rotation); // convert a vector from earth to body frame void earth_to_body(Vector3f &v) const; // create a quaternion from Euler angles void from_euler(float roll, float pitch, float yaw); // create a quaternion from Euler angles applied in yaw, roll, pitch order // instead of the normal yaw, pitch, roll order void from_vector312(float roll, float pitch, float yaw); // convert this quaternion to a rotation vector where the direction of the vector represents // the axis of rotation and the length of the vector represents the angle of rotation void to_axis_angle(Vector3f &v) const; // create a quaternion from a rotation vector where the direction of the vector represents // the axis of rotation and the length of the vector represents the angle of rotation void from_axis_angle(Vector3f v); // create a quaternion from its axis-angle representation // the axis vector must be length 1. the rotation angle theta is in radians void from_axis_angle(const Vector3f &axis, float theta); // rotate by the provided rotation vector void rotate(const Vector3f &v); // create a quaternion from a rotation vector // only use with small angles. I.e. length of v should less than 0.17 radians (i.e. 10 degrees) void from_axis_angle_fast(Vector3f v); // create a quaternion from its axis-angle representation // the axis vector must be length 1, theta should less than 0.17 radians (i.e. 10 degrees) void from_axis_angle_fast(const Vector3f &axis, float theta); // rotate by the provided rotation vector // only use with small angles. I.e. length of v should less than 0.17 radians (i.e. 10 degrees) void rotate_fast(const Vector3f &v); // get euler roll angle float get_euler_roll() const; // get euler pitch angle float get_euler_pitch() const; // get euler yaw angle float get_euler_yaw() const; // create eulers from a quaternion void to_euler(float &roll, float &pitch, float &yaw) const; // create eulers from a quaternion Vector3f to_vector312(void) const; float length(void) const; void normalize(); // initialise the quaternion to no rotation void initialise() { q1 = 1.0f; q2 = q3 = q4 = 0.0f; } Quaternion inverse(void) const; // reverse the rotation of this quaternion void invert(); // allow a quaternion to be used as an array, 0 indexed float & operator[](uint8_t i) { float *_v = &q1; #if MATH_CHECK_INDEXES assert(i < 4); #endif return _v[i]; } const float & operator[](uint8_t i) const { const float *_v = &q1; #if MATH_CHECK_INDEXES assert(i < 4); #endif return _v[i]; } Quaternion operator*(const Quaternion &v) const; Vector3f operator*(const Vector3f &v) const; Quaternion &operator*=(const Quaternion &v); Quaternion operator/(const Quaternion &v) const; // angular difference between quaternions Quaternion angular_difference(const Quaternion &v) const; // absolute (e.g. always positive) earth-frame roll-pitch difference (in radians) between this Quaternion and another float roll_pitch_difference(const Quaternion &v) const; };